
Chapter 1

Double Integrals over
Rectangular Regions

fixme change intro to reflect shorter chapter In this chapter, we extend this powerful idea
into higher dimensions using the tools of multiple integration. While single integration
enables us to calculate the area under a curve or the volume under a surface, multiple
integration allows us to calculate volumes in three dimensions, and even hypervolumes
in higher dimensions.

We start by discussing double integration, which allows us to find the volume under a
surface in three dimensions. This method involves slicing the solid into infinitesimally
small columns, and summing the volumes of these columns.

Next, we’ll cover triple integration, a tool that lets us find the volume of more complicated
solids in three-dimensional space. The idea is similar to double integration.

To properly implement these techniques, we’ll also discuss the different coordinate sys-
tems that can be used in multiple integration, such as rectangular, cylindrical, and spher-
ical coordinates, and when it’s advantageous to use one system over another.

By the end of this chapter, you will have a deeper understanding of the techniques of mul-
tiple integration and how to apply them to find the volumes of various types of solids. The
methods we study here will serve as a foundation for many topics in higher mathematics
and physics, including electromagnetism, fluid dynamics, and quantum mechanics.

1.1 Double Integrals

Double integrals extend single-variable integration to functions of two variables, allowing
us to calculate quantities like area, volume, and mass over a two-dimensional region. By
integrating a function across a specified domain in the xy-plane, they help analyze how a
quantity changes in both dimensions. Common in physics, engineering, and economics,
double integrals involve setting up limits for the region and performing two successive
integrations, often tailored to the region’s geometry. We begin by discussing double in-
tegrals over rectangular regions, then extending that discussion to regions of any general
shape. Finally, we discuss applications of double integrals.
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2 Chapter 1. DOUBLE INTEGRALS OVER RECTANGULAR REGIONS

1.1.1 Over Rectangular Regions

Suppose there is some function, z = f(x, y), that is defined over the rectangular region,
R, defined by R = [a, b] × [c, d] = {(x, y)|a ≤ x ≤ b, c ≤ y ≤ d}, and f is such that f ≥ 0

for all (x, y) ∈ R. Then the graph of f is a surface that lies above the rectangular region,
R (see figure 1.1).
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Figure 1.1: The graph of f over the region R

Let us call the solid that fills the space between the xy-plane and the surface z = f(x, y)
S. Formally, this is written as

S = {(x, y, z) ∈ R3|0 ≤ z ≤ f(x, y), (x, y) ∈ R}

How can we find the volume of the solid, S? We will apply what we learned about Rie-
mann sums and definite integrals in two dimensions to this three dimensional problem.

First, we divide R into rectangular subregions. We do this by dividing the interval [a, b]
into m subintervals with width ∆x = (b− a)/m and the interval [c, d] into n subintervals
with width ∆y = (d− c)/n. Drawing lines through these divisions parallel to the x- and
y-axes, we create a field of subrectangles, each with area ∆A = ∆x∆y (see figure 1.2).
Each subrectangle is defined by:

Rij = [xi−1, xi]× [yj−1, yj] − {(x, y)|xi−1 ≤ x ≤ xi, yj−1 ≤ y ≤ yj}

Since f(x, y) in continuous over the R, there is some point, (x∗ij, y∗
ij), equal to the average

value of f(x, y) over the subrectangle. Then we can approximate the volume between the
xy-plane and z = f(x, y) over the subrectangle as a column with base area ∆A and height
f(x∗ij, y

∗
ij) (seefigure 1.3) and the volume of the column is given by:

Vij = f(x∗ij, y
∗
ij)∆A
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Figure 1.2: The region, R, on the xy-plane divided into subrectangles
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Figure 1.3: A single column with base ∆A and height f(x∗ij, y∗
ij)
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And therefore the approximate volume of the solid, S, that lies between the region, R, and
z = f(x, y) is the sum of all the columns over i and j:

VS ≈
n∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij)∆A

And just like with the area under a curve, we get the true volume by taking the limit as
n → ∞, which becomes a double integral:

Volume of a Solid over a Region

VS = lim
n→∞

n∑
i=1

n∑
j=1

f(x∗ij, y
∗
ij)∆A =

∫∫
R
f(x, y)dA

1.2 Iterated Integrals

To be able to evaluate the double integral as outlined above, we must first discuss iterated
integrals. Iterated integrals happen when you evaluate two single integrals, one inside
the other. Consider some function, g(x, y). We could integrate that function from x = q

to x = r thusly: ∫ r
q

g(x, y)dx

Notice that we are integrating with respect to x, so y terms will be treated as constants
(recall partial differentiation: this is the opposite process). Let’s call the result of this first
integral A(y):

A(y) =

∫ r
q

g(x, y)dx

We can then integrate the resulting function, A(y), from y = s to y = t:∫ t
s

A(y)dy =

∫ t
s

[∫ r
q

g(x, y)dx

]
dy

This is called an iterated integral. When evaluating iterated integrals, we work from the
inside out. You can also write it without the brackets:∫ t

s

∫ r
q

g(x, y)dxdy

Example: evaluate the iterated integral
∫3
0

∫2
1 xy

2 dydx.
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Solution: We can re-write this to more explicitly show the inner and outer integrals:∫ 3
0

[∫ 2
1

xy2 dy

]
dx

As you can see, the inner integral is with respect to y. Let’s isolate and evaluate the inner
integral: ∫ 2

1

xy2 dy = x

∫ 2
1

y2 dy = x

[
1

3
y2

]y=2

y=1

=
x

3

[
23 − 13

]
=

x

3
[8− 1] =

7x

3

We were able to move x outside the integral because when we are integrating with respect
to a specific variable (in this case, y), other variables are treated as constants. Now we
can substitute

∫2
1 xy

2 dy = 7x
3 into the iterated integral:∫ 3

0

[∫ 2
1

xy2 dy

]
dx =

∫ 3
0

[
7x

3

]
dx

=
7

3

[
1

2
x2
]x=3

x=0

=
7

6

[
32 − 02

]
=

7 · 9
6

=
21

2

Exercise 1 Order of Evaluating Iterated Integrals

.Show that
∫3
0

∫2
1 xy

2 dydx =
∫2
1

∫3
0 xy

2 dxdy.

Answer on Page 9

Working Space
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Exercise 2 Evaluating Iterated Integrals

.Evaluate the following iterated integrals.

1.
∫1
0

∫2
1 (x+ e−y) dxdy

2.
∫3
−3

∫π/2
0

(
2y+ y2 cos x

)
dxdy

3.
∫3
0

∫π/2
0 t2 sin3 θdθdt

Answer on Page 9

Working Space

1.3 Fubini’s Theorem for Double Integrals

Fubini’s theorem states that for a function, f, that is continuous over the rectangular region,
R, the double integral of f over the region R = {(x, y)|a ≤ x ≤ b, c ≤ y ≤ d} is equal to the
iterated integral of f with respect to x and y. This is expressed mathematically below:
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Fubini’s Theorem

If f is continuous on the rectangle R = {(x, y) |a ≤ x ≤ b, c ≤ y ≤ d}, then∫∫
R

f(x, y) dA =

∫b
a

∫d
c

f(x, y)dydx =

∫d
c

∫b
a

f(x, y)dxdy

Exercise 3 Applying Fubini’s Theorem

.Rewrite the following double integrals
as iterated integrals.

1.
∫∫

R
xy2

x2+1
dA, R = {(x, y)|0 ≤ x ≤

1,−3 ≤ y ≤ 3}

2.
∫∫

R
sec θ√
1+t2

dA, R = {(θ, t)|0 ≤ θ ≤
π
4 , 0 ≤ t ≤ 1}

Answer on Page 10

Working Space
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Exercise 4

.Evaluate the double integral.

1.
∫∫

R
xy2

x2+1
dA, R = {(x, y) | 0 ≤ x ≤

2, − 3 ≤ y ≤ 3}

2.
∫∫

R
tan θ√
1−t2

dA, R = {(θ, t) | 0 ≤ θ ≤
π/3, 0 ≤ t ≤ 1

2 }

3.
∫∫

R x sin (x+ y)dA, R = [0, π/6] ×
[0, π/3]

Answer on Page 10

Working Space

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.
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Appendix A

Answers to Exercises

Answer to Exercise ?? (on page 5)

We have already shown that
∫3
0

∫2
1 xy

2 dydx = 21
2 . We will evaluate

∫2
1

∫3
0 xy

2 dxdy and
see if we get the same result.∫ 3

0

xy2 dx = y2

∫ 3
0

xdx = y2

[
1

2
x2
]x=3

x=0

=
y2

2

[
32 − 02

]
=

9y2

2

Substituting this back into the iterated integral:∫ 2
1

∫ 3
0

xy2 dxdy =

∫ 2
1

9y2

2
dy =

9

2

∫ 2
1

y2 dy

=
9

2

[
1

3
y3

]y=2

y=1

=
9

2
· 1
3

[
23 − 13

]
=

3

2
(8− 1) =

21

2

Answer to Exercise 2 (on page 6)

1. Answer: 5
2−

1
e . Solution:

∫1
0

∫2
1 (x+ e−y) dxdy =

∫1
0

(
1
2x

2 + xe−y
)
|x=2
x=1 dy =

∫1
0

(
2− 1

2 + 2e−y − e−y
)
dy =∫1

0

(
3
2 + e−y

)
dy =

[
3
2y− e−y

]y=1

y=0
=
(
3
2(1) − e−1

)
−
(
3
2(0) − e0

)
= 5

2 −
1
e

2. Answer: 18. Solution:
∫3
−3

∫π/2
0

(
2y+ y2 cos x

)
dxdy =

∫3
−3

[
2xy+ y2 sin x

]x=π/2

x=0
dy =∫3

−3

[(
πy+ y2

)
− (0+ 0)

]
dy =

∫3
−3

(
πy+ y2

)
dy =

[
π
2y

2 + 1
3y

3
]y=3

y=−3
=
(
π
2 (9) +

1
3(27)

)
−(

π
2 (9) +

1
3(−27)

)
= 9− (−9) = 18

3. Answer: 6. Solution:
∫3
0

∫π/2
0 t2 sin3 θdθdt =

(∫3
0 t

2 dt
)
×
(∫π/2

0 sin3 θdθ
)
=
[
1
3t

3
]t=3

t=0
×(∫π/2

0 sin θ sin2 θdθ
)
= 9

∫π/2
0 sin θ

(
1− cos2 θ

)
dθ = 9

[∫π/2
0 sin θdθ−

∫π/2
0 sin θ cos2 θdθ

]
=

9
[
(− cos θ) |θ=π/2

θ=0 +
(
1
3 cos

3 θ
)
|
θ=π/2
θ=0

]
= 9

[
−(− cos 0) + (− 1

3 cos
3 0)
]

= 9
(
1− 1

3

)
=

9
(
2
3

)
= 6

9
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Answer to Exercise 3 (on page 7)

1.
∫1
0

∫3
−3

xy2

x2+1
dydx OR

∫3
−3

∫1
0

xy2

x2+1
dxdy

2.
∫π/4
0

∫1
0

sec θ√
1+t2

dtdθ OR
∫1
0

∫π/4
0

sec θ√
1+t2

dθdt

Answer to Exercise 4 (on page 8)

1.
∫∫

R
xy2

x2+1
dA, R = {(x, y) |0 ≤ x ≤ 2,−3 ≤ y ≤ 3} =

∫2
0

∫3
−3

xy2

x2+1
dydx =

∫2
0

x
x2+1

dx ·∫3
−3 y

2 dy. To evaluate the integral with respect to x, we use the u-substitution u =

x2 + 1, (x)dx = 1
2du:

∫2
0

x
x2+1

dx ·
∫3
−3 y

2 dy =
∫x=2
x=0

1
2
1
u du ·

∫3
−3 y

2 dy = 1
2 ln |u||x=2

x=0 ·
1
3

[
y3
]y=3

y=−3
= 1

2

[
ln
(
22 + 1

)
− ln

(
02 + 1

)]
· 1
3

[
33 − (−3)3

]
= 1

2 ln 5 · 1
3 (27− (−27)) =

ln 5
2

54
3 = 9 ln 5

2.
∫∫

R
tan θ√
1−t2

dA, R = {(θ, t) | 0 ≤ θ ≤ π/3, 0 ≤ t ≤ 1
2 } =

∫π/3
0

∫1/2
0

tan θ√
1−t2

dtdθ =[∫π/3
0 tan θdθ

]
·
[∫1/2

0
1√
1−t2

dt
]
. Recall that d

dt arcsin t = 1√
1−t2

. Applying FTC, then[∫π/3
0 tan θdθ

]
·
[∫1/2

0
1√
1−t2

dt
]
=
[∫π/3

0 tan θdθ
]
· [arcsin t]

t=1/2
t=0 =

[∫π/3
0 tan θdθ

]
·[

arcsin 1
2 − arcsin 0

]
=
[∫π/3

0 tan θdθ
]
·
[
π
6

]
= π

6

∫π/3
0

sin θ
cos θ dθ. To evaluate this final

integral, we use the u-substitution u = cos θ and −du = sin θdθ: π
6

∫π/3
0

sin θ
cos θ dθ =

−π
6

∫θ=π/3
θ=0

1
u du = −π

6 lnu|
θ=π/3
θ=0 = −π

6 [ln (cos θ)]θ=π/3
θ=o = π

6

[
ln (cos 0) − ln

(
cos π

3

)]
=

π
6

[
ln 1− ln 1

2

]
= π

6 ln 1
1/2

= π
6 ln 2

3.
∫∫

R x sin (x+ y)dA, R = [0, π/6] × [0, π/3] =
∫π/6
0

∫π/3
0 x sin (x+ y)dydx. Recall the

sum formula for sine:

sin (x+ y) = sin x cosy+ cos x siny

We can substitute this into our iterated integral:∫π/6
0

∫π/3
0

x sin (x+ y)dydx =

∫π/6
0

∫π/3
0

x [sin x cosy+ cos x siny] dydx

=

∫π/6
0

[∫π/3
0

x sin x cosydy+

∫π/3
0

x cos x sinydy

]
dx

Let us designate
∫π/3
0 x sin x cosydy as integral A and

∫π/3
0 x cos x sinydy as integral

B. First, we will evaluate integral A:∫π/3
0

x sin x cosydy = x sin x

∫π/3
0

cosydy
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= x sin x [siny]
y=π/3
y=0 = x sin x

[
sin π

3
− sin 0

]
= x sin x

(√
3

2

)
=

x
√
3

2
sin x

Next we evaluate integral B:∫π/3
0

x cos x sinydy = x cos x
∫π/3
0

sinydy

= x cos x [− cosy]y=π/3
y=0 = x cos x

[
− cos π

3
− (− cos 0)

]
= x cos x

[
−
1

2
− (−1)

]
=

x

2
cos x

Substituting back in for integrals A and B:∫π/6
0

[∫π/3
0

x sin x cosydy+

∫π/3
0

x cos x sinydy

]
dx =

∫π/6
0

[
x
√
3

2
sin x+

x

2
cos x

]
dx

=

√
3

2

∫π/6
0

x sin xdx+
1

2

∫π/6
0

x cos xdx

Again, we will designate
∫π/6
0 x sin xdx as integral C and

∫π/6
0 x cos xdx as integral

D. We start by using integration by parts to evaluate integral C:
Let u = x and dv = sin xdx. Then v = −cosx and du = dx and therefore:∫π/6

0

x sin xdx = [x (− cos x)]x=π/6
x=0 −

∫π/6
0

(− cos x) dx

=
[π
6

(
− cos π

6

)]
− [0 (− cos 0)] + sin x|

x=π/6
x=0

= −
π

6
·
√
3

2
− 0+ sin π

6
− sin 0 =

1

2
−

π
√
3

12
=

6− π
√
3

12

Next, we will use integration by parts to evaluate integral D. Let u = x and dv =
cos xdx. Then du = dx and v = sin x and therefore:∫π/6

0

x cos xdx = [x sin x]
x=π/6
x=0 −

∫π/6
0

sin xdx

=
[π
6
sin π

6
− 0 sin 0

]
− (− cos x) |x=π/6

x=0 =
π

6
· 1
2
+ cos π

6
− cos 0

=
π

12
+

√
3

2
− 1 =

π+ 6
√
3− 12

12

Substituting back in for integrals C and D:
√
3

2

∫π/6
0

x sin xdx+
1

2

∫π/6
0

x cos xdx =

√
3

2

(
6− π

√
3

12

)
+

1

2

(
π+ 6

√
3− 12

12

)

=
6
√
3− 3π+ π+ 6

√
3− 12

24
=

6
√
3− 6− π

12
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Index

double integral, 4

iterated integral, 4
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