CHAPTER |

Simulation with Vectors

You wrote a python program that simulated to the flight of a hammer to predict its alti-
tude. Your simulation dealt only with scalars. Now you are ready to create simulations
of positions, velocities, accelerations, and forces as vectors.

In this chapter, you are going to simulate two moons that, as they wandered through the
vast universe, get caught in each other’s gravity well. We will assume there are no other
forces acting upon the moons.

1.1 Force, Acceleration, Velocity, and Position

We talked about the magnitude of a gravitational attraction between two masses:

mim;
T2

F=G

Where F is the magnitude of the force in newtons, m; and m, are the masses in kg,
1 is the distance between them in meters, and g is the universal gravitational constant:
6.67430 x 10711,

What is the direction? For the two moons, the force on moon 1 will pull toward moon 2.
And the force on moon 2 will pull toward moon 1.

Of course, if something is big (like the sun), you need to be more specific: The force
points directly at the center of mass of the object that is generating the force.

Each of the moons will start off with a velocity vector. That velocity vector will change
over time a the moon is accelerated by the force of gravity. If you have a mass m with an
initial velocity vector of v that is being accelerated with a constant force vector F, at time
t the new velocity vector will be:

S S t=
Vi :VO‘F*F
m

If an object is at an initial position vector of py and moves with a constant velocity vector
Vv for time t, the new position will be given by
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Pt =7Po+tV

1.2 Simulations and Step Size

As two moons orbit each other, the force, acceleration, velocity, and position are changing
smoothly and continuously. It is difficult to simulate truly continuous things on a digital
computer.

However, think about a movie: It shows you many frames each second. Each frame is a
still picture of the state of the system. And the more frames per second, the smoother it
looks.

We do a similar trick in simulations. We say “We are going run our simulation in 2 hour
steps. We will assume that the acceleration and velocity were constant for those two
hours. We will update our position vectors accordingly, and then we will recalculate our
acceleration and velocity vectors.”

Generally, as you make the step size smaller, your simulation will get more accurate and
take longer to execute.

1.3 Make a Text-based Simulation

To start, you are going to write a Python program that simulates the moons and prints
out their position for every time step. Later we will add graphs and even animation.

We are going to assume the two moons are traveling the same plane so we can do all the
math and graphing in 2 dimensions.

Each moon will be represented by a dictionary containing the state of the moon:

e Its mass in kilograms

e Its position — a 2-dimensional vector represent x and y coordinates of the center of
the moon.

e Its velocity — a 2-dimensional vector

e Its radius — Each moon has a radius so we know when the centers of the two moons
are so close to each other that they must have collided.

e Its color — We will use that when do the plots and animations. One moon will be
red, the other blue.
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Then there will be a loop where we will update the positions of the moons and then
recalculate the acceleration and velocities.

How much time will be simulated? 100 days or until the moons collide, whichever comes
first.

We will use numpy arrays to represent our vectors.

Create a file called moons.py and type in this code:

import numpy as np

# Constants

G = 6.67430e-11 # Gravitational constant (Nm~2/kg~2)
SEC_PER_DAY = 24 x 60 * 60 # How many seconds in a day?
MAX_TIME = 100 * SEC_PER_DAY # 100 days

TIME_STEP = 2 * 60 * 60 # Update every two hours

# Create the inital state of Moon 1

ml = {
"mass": 6.0e22, # kg
"position": np.array([0.0, 200_000_000]), # m
"velocity": np.array([100.0, 25.0]), # m/s
"radius": 1_500_000.0, # m
"color": "red" # For plotting

# Create the inital state of Moon 2

m2 = {
"mass": 11.0e22, # kg
"position": np.array([0.0, -150_000_000]), # m
"velocity": np.array([-45.0, 2.0]), # m/s
"radius": 2_000_000.0, # m
"color": "blue" # For plotting

# Lists to hold positions and time
positionl_log = []

position2_log = []

time_log = []

# Start at time zero seconds
current_time = 0.0

# Loop until current time exceed Max Time
while current_time <= MAX_TIME:

# Add time and positions to log
time_log.append(current_time)
positionl_log.append(ml["position"])
position2_log.append(m2["position"])
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# Print the current time and positions

print (f"Day {current_time/SEC_PER_DAY:.2f}:")

print (£"\tMoon 1:({m1['position'][0]:,.1f},{mi1['position'][1]:,.1£f})")
print (f"\tMoon 2:({m2['position'][0]:,.1f},{m2['position'][1]:,.1£})")

# Update the positions based on the current velocities
ml["position"] = mi["position"] + mi["velocity"] * TIME_STEP
m2["position"] = m2["position"] + m2["velocity"] * TIME_STEP

# Find the vector from moonl to moon2
delta = m2["position"] - mi["position"]

# What is the distance between the moons?
distance = np.linalg.norm(delta)

# Have the moons collided?

if distance < ml["radius"] + m2["radius"]:
print (f"**x Collided {current_time:.1f} seconds in!")
break

# What is a unit vector that points from moonl toward moon2?
direction = delta / distance

# Calculate the magnitude of the gravitational attraction
magnitude = G * ml["mass"] * m2["mass"] / (distancex**2)

# Acceleration vector of moonl (a = f/m)
accelerationl = direction * magnitude / mi["mass"]

# Acceleration vector of moon2
acceleration2 = (-1 * direction) * magnitude / m2["mass"]

# Update the velocity vectors
ml["velocity"] = mil["velocity"] + accelerationl * TIME_STEP
m2["velocity"] = m2["velocity"] + acceleration2 * TIME_STEP

# Update the clock
current_time += TIME_STEP

print (f"Generated {len(positionl_log)} data points.")

When your run the simulation, you will see the positions of the moons for 100 days:

> python3 moons.py

Day 0.00:

Moon 1:(0.0,200,000,000.0)

Moon 2:(0.0,-150,000,000.0)

Day 0.08:

Moon 1:(720,000.0,200,180,000.0)
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Moon 2:(-324,000.0,-149,985,600.0)
Day 0.17:

Moon 1:(1,439,990.7,200,356,896.1)
Moon 2:(-647,995.0,-149,969,507.0)

Day 100.00:

Moon 1:(119,312,305.5,283,265,313.5)
Moon 2:(17,393,287.9,-60,319,261.9)
Generated 1201 data points.

Look over the code. Make sure you understand what every line does.

1.4 Graph the Paths of the Moons

Now you will use the matplotlib to graph the paths of the moons. Add this line to the
beginning of moons. py

import matplotlib.pyplot as plt

Add this code to the end of your moons. py:

# Convert lists to np.arrays
positionsl = np.array(positioni_log)
positions2 = np.array(position2_log)

# Create a figure with a set of axes
fig, ax = plt.subplots(l, figsize=(7.2, 10))

# Label the axes

ax.set_xlabel("x (m)")

ax.set_ylabel("y (@m)")
ax.set_aspect("equal", adjustable='box')

# Draw the path of the two moons
ax.plot(positionsi[:, 0], positionsi[:, 1], mi["color"], 1lw=0.7)
ax.plot(positions2[:, 0], positions2[:, 1], m2["color"], 1lw=0.7)

# Save out the figure
fig.savefig("plotmoons.png")

When you run it, your plotmoons.png should look like this:
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It is nifty to see the paths, but we don’t know where each moon was at a particular time.
In fact, it is difficult to figure out which end of each curve was the beginning and which
was the ending.

What if we added some lines and labels every 300 steps to put a sense of time into the
plot? Add one more constant after the import statements:

PAIR_LINE_STEP = 300 # How time steps between pair lines
Immediately before you save the figure to the file, add the following code:

# Draw some pair lines that help the
# viewer understand time in the graph
i=0

while i < len(positionsi):

# Where are the moons at the ith entry?

a = positionsi[i, :]

b = positions2[i, :]

ax.plot([a[0], b[0]], [al1], b[1]1], "--", c="gray", 1lw=0.6, marker=".")

# What is the time at the ith entry?
t = time_logl[i]
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# Label the location of moon 1 with the day
ax.text(al[0], al1], f£"{t/SEC_PER_DAY:.0f} days")
i += PAIR_LINE_STEP

When you run it, your plot should look like this:
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Now you can get a feel for what happened: The moons were attracted to each other by
gravity and started to circle each other. The heavier moon accelerates less quickly, thus it
makes a smaller loop.

Maybe we will get a better feel for what is happening if we look at more time. Let’s
increase it to 400 days. Change the relevant constant:

MAX_TIME = 400 * SEC_PER_DAY # 100 days

Now it should look like this:
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Now you can see the pattern: They are rotating around each other and the pair is gradually
migrating up and to the right.

1.5 Conservation of Momentum

You are observing a really important idea: the momentum of a system will be conserved.
That is, absent forces from outside the system, the velocity of the center of mass will not
change.

We can compute the initial center of mass and its velocity. In both cases, we just do a
weighted average using the mass of the moon as the weight.

Immediately after you initialize the state of two moons, calculate the initial center of mass
and its velocity:

# Calculate the initial position and velocity of the center of mass

tm = ml["mass"] + m2["mass"] # Total mass

cm_position = (ml["mass"] * ml["position"] + m2["mass"] * m2["position"]) / tm
cm_velocity = (ml["mass"] * ml["velocity"] + m2["mass"] * m2["velocity"]) / tm

Let’s record the center of mass for each time. Before the loop starts, create a list to hold
them:
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cm_log = []

Inside the loop (before any calculations), append the current center of mass position to
the log;:

cm_log.append(cm_position)

Anywhere later in the loop (after you update the positions of the moon), update cm_position:

# Update the center of mass
cm_position = cm_position + cm_velocity * TIME_STEP

Now let’s look at the positions of the moons relative to the center of mass. Before you do
any plotting, convert the list to a numpy array and subtract it from the positions:

cms = np.array(cm_log)
# Make positions relative to the center of mass

positionsl = positionsl - cms
positions2 = positions2 - cms

Now when you run it you can really see what is happening:
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The moons are tracing elliptical paths. The center of mass is the focus point for both of
them.
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1.6 Animation

One of the features of matplotlib that not a lot of people understand is how to make
animations with it. This seems like a really great opportunity to make an animation
showing the position, velocity, acceleration of the moons. We will also show the center of
mass.

The trick to animations is that you create a bunch “artist” objects. You create a func-
tion that updates the artists. matplotlib will call your functions, tell the artists to draw
themselves, and make a movie out of that.

Make a copy of moons. py called animate_moons.py.

Edit it to look like this:

import numpy as np
import matplotlib.pyplot as plt

# Import animation support and artists

from matplotlib.animation import FuncAnimation
from matplotlib.patches import Circle, FancyArrow
from matplotlib.text import Text

# Constants

G = 6.67430e-11 # Gravitational constant (Nm~2/kg"2)

SEC_PER_DAY = 24 x 60 * 60 # How many seconds in a day?

MAX_TIME = 400 * SEC_PER_DAY # 100 days

TIME_STEP = 12 * 60 * 60 # Update every 12 hours

FRAMECOUNT = MAX_TIME / TIME_STEP # How many frames in animation
ANI_INTERVAL = 1000 / 50 # ms for each frame in animation

# The velocity and acceleration vectors are invisible
# unless we scale them up. A lot.

VSCALE = 140000.0

ASCALE = VSCALE * 800000.0

# Create the inital state of Moon 1

ml = {
"mass": 6.0e22, # kg
"position": np.array([0.0, 200_000_000]), # m
"velocity": np.array([100.0, 25.0]), # m/s
"radius": 1_500_000.0, # m
"color": "red", # For plotting

# Create the inital state of Moon 2

m2 = {
"mass": 11.0e22, # kg
"position": np.array([0.0, -150_000_000]), # m
"velocity": np.array([-45.0, 2.0]), # m/s
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"radius": 2_000_000.0, # m
"color": "blue", # For plotting

# Calculate the initial position and velocity of the center of mass

tm = ml["mass"] + m2["mass"] # Total mass

cm_position = (ml["mass"] * ml["position"] + m2["mass"] * m2["position"]) / tm
cm_velocity = (ml["mass"] * ml["velocity"] + m2["mass"] * m2["velocity"]) / tm

# Start at time zero seconds
current_time = 0.0

# Create the figure and axis
fig, ax = plt.subplots(l, figsize=(7.2, 10))

# Set up the axes

ax.set_xlabel("x (m)")
ax.set_x1im((-1.2e8, 4e8))
ax.set_ylabel("y (m)")
ax.set_ylim((-1.6e8, 5.5e8))
ax.set_aspect("equal", adjustable="box")
fig.tight_layout ()

# Create artists that will be edited in animation
time_text = ax.add_artist(Text(0.03, 0.95, "", transform=ax.transAxes))
circlel = ax.add_artist(Circle((0, 0), radius=mi["radius"], color=mi["color"]))
circle2 = ax.add_artist(Circle((0, 0), radius=m2["radius"], color=m2["color"]))
circle_cm = ax.add_artist(Circle((0, 0), radius=m2["radius"], color="purple"))
varrowl = ax.add_artist(FancyArrow(0, O, 0, 0, color="green", head_width=ml1["radius"]))
varrow2 = ax.add_artist(FancyArrow(0, O, 0, 0, color="green", head_width=m2["radius"]))
acc_arrowl = ax.add_artist(

FancyArrow(0, 0, 0, 0, color="purple", head_width=ml["radius"])

)
acc_arrow2 = ax.add_artist(

FancyArrow(0, 0, 0, O, color="purple", head_width=m2["radius"])
)

# This function will get called for every frame
def animate(frame):

# Global variables needed in scope from the model
global cm_position, cm_velocity, current_time, ml, m2

# Global variables needed in scope from the artists
global time_text, varrowl, varrow2, acc_arrowl, acc_arrow2, circlel, circle2, circle_cm

print (f"Updating artists for day {current_time/SEC_PER_DAY:.1f}.")
# Update the positions based on the current velocities

ml["position"] = mi["position"] + mi["velocity"] * TIME_STEP
m2["position"] = m2["position"] + m2["velocity"] * TIME_STEP
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# Update day label
time_text.set_text(f"Day {current_time/SEC_PER_DAY:.O0f}")

# Update positions of circles
circlel.set_center(ml["position"])
circle2.set_center(m2["position"])

# Update velocity arrows
varrowl.set_data(
x=m1["position"] [0],
y=m1["position"][1],
dx=VSCALE * mil["velocity"][0],
dy=VSCALE * mi["velocity"][1],
)
varrow2.set_data(
x=m2["position"] [0],
y=m2["position"][1],
dx=VSCALE * m2["velocity"][0],
dy=VSCALE * m2["velocity"][1],

# Update the center of mass
cm_position = cm_position + cm_velocity * TIME_STEP
circle_cm.set_center(cm_position)

# Find the vector from moonl to moon2
delta = m2["position"] - mi["position"]

# What is the distance between the moons?
distance = np.linalg.norm(delta)

# Have the moons collided?
if distance < mil["radius"] + m2["radius"]:
print (f"*** Collided {current_time:.1f} seconds in!")

# What is a unit vector that points from moonl toward moon2?
direction = delta / distance

# Calculate the magnitude of the gravitational attraction
magnitude = G * ml["mass"] * m2["mass"] / (distance**2)

# Acceleration vector of moons (a = f/m)
accelerationl = direction * magnitude / ml["mass"]
acceleration2 = (-1 * direction) * magnitude / m2["mass"]

# Update the acceleration arrows

acc_arrowl.set_data(
x=m1["position"] [0],
y=m1["position"][1],
dx=ASCALE * accelerationl[0],
dy=ASCALE * accelerationi[1],
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)

acc_arrow2.set_data(
x=m2["position"] [0],
y=m2["position"] [1],
dx=ASCALE * acceleration2[0],
dy=ASCALE * acceleration2[1],

# Update the velocity vectors
ml["velocity"] = ml["velocity"] + accelerationl * TIME_STEP
m2["velocity"] = m2["velocity"] + acceleration2 * TIME_STEP

# Update the clock
current_time += TIME_STEP

# Return the artists that need to be redrawn
return (

time_text,

varrowl,

varrow?2,

acc_arrowl,

acc_arrow2,

circlel,

circle2,

circle_cn,

# Make the rendering happen
animation = FuncAnimation(
fig,
animate,
np.arange (FRAMECOUNT) ,
interval=ANI_INTERVAL

# Save the rendering to a video file
animation.save("moonmovie.mp4")

When you run this, it will take longer than the previous versions. You should have a
video file that shows a simulation of the moons tracing their elliptical paths around their
center of mass:
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1.7 Challenge: The Three-Body Problem

It is time to stretch a little as a physicist and programmer: You are going to make a new
version of moons . py that handles three moons instead of just two.

This is known as "The Three-Body Problem,” and people have tried for centuries to come
up with a way to figure out (from the initial conditions) where the three moons would
be at time t without doing a simulation. And no one has.

For a lot of problems, the outcome is not very sensitive to the initial conditions. For
example, the flight of a cannonball: If it leaves the muzzle of the cannon a little faster, it

will go a little farther.

For the three-body problem, the outcome can be radically different even if the initial
conditions are very similar.

(There is a whole field of mathematics studying systems that are very sensitive to initial
conditions. It is known as dynamical systems or chaos theory.

Copy moons . py to 3moons.py. Here is a reasonable initial state for your third moon:
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m3 = {
"mass": 4.0e22, # kg
"position": np.array([50_000_000, 80_000_000]), # m
"velocity": np.array([-30.0, -35.0]), # m/s
"radius": 1_700_000.0, # m
"color": "green"

If I run that simulation for 100 days, I get a plot like this:
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Visibly you can see this is very different from the two-body problem that just traced
ellipses around the center of mass.

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.
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