
Chapter 1

Matrices

You’ve already had experience with matrices earlier in this module and also when you’ve
used spreadsheets. In this chapter you’ll learn the types of matrices and get an introduc-
tion to some of the special matrices used for various calculations.

As you know, a matrix is a rectangular array of numbers arranged in rows and columns.
The individual numbers in the matrix are called elements or entries. Matrices can be
described by their dimensions. For example, a matrix with 2 rows and 3 columns is a 2
by 3 matrix.

[
1 2 3

4 5 6

]

More generally, a matrix with m rows and n columns is referred to as an m×n matrix or
simply an m-by-n matrix, and m and n are its dimensions.

The general form of a 2× 3 matrix A is:

A =

[
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

]

1.1 Types of Matrices

Matrices can be described by their shape:

• Row Matrix: has only one row.

• Column Matrix: has only one column.

• Square Matrix: has the same number of rows and columns.

• Rectangular Matrix: has an unequal number of rows and columns.

They can also be described by their unique numerical properties. Special matrices tht
come in handy for certains types of computations. These are a few of the most common
special matrices.

• Zero Matrix: contains only entries that are zero.

1

2 Chapter 1. MATRICES

• IdentityMatrix: sometimes called the unit matrix, is a square matrix whose diagonal
entries are 1 and all other entries are 0.

• Symmetric Matrix: a square matrix that equals its transpose. The next section shows
how to create the transpose of a matrix,

• Diagonal Matrix: has nonzero elements on the main diagonal, but all other elements
are zero

• Triangular Matrix: This is a special square matrix that can be upper triangular or
lower triangular. If upper, the main diagonal and all entries above it are nonzero
while the lower entries are all zero. If lower, the main diagonal and all the entries
below it are nonzero while the upper entries are all zero.

1.1.1 Symmetric Matrices

If you want to find out if a square matrix is symmetric, you need to transpose it. If the
transpose is equal to the original matrix, then the matrix is symmetric.

To transpose a matrix, flip it over its diagonal so that the rows and columns are switched,
like this:

A =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3


After transposing:

AT =

a1,1 a2,1 a3,1

a1,2 a2,2 a3,2

a1,3 a2,3 a3,3


Note that AT means the transpose of A.

Let’s see how this works for the following square matrix, A.

A =

1 2 3

2 4 5

3 5 6


Switch the rows and columns to get the transpose:

AT =

1 2 3

2 4 5

3 5 6


Notice that A = AT , so the matrix is symmetric.

What about matrix B?

B =

1 2 3

2 4 5

7 8 9



Section 1.1 TYPES OF MATRICES 3

Switch the rows and columns to get the transpose:

B =

1 2 7

2 4 8

3 5 9



Note that B 6= BT . So B is not symmetrical.

Exercise 1 Matrix Transposition

.Find the transpose of this matrix. Is it
symmetric?

A =

 3 −2 4

−2 6 2

4 2 3



Answer on Page 7

Working Space

1.1.2 Creating Matrices in Python

Create a file called matrices_creation.py and enter this code:

import the python module that supports matrices
import numpy as np
Use the function np.array to define a matrix that
contains specific values that you supply.
A = np.array([[5, 1, 3],

[1, -1, 8],
[6, 2, 1]])

The transpose function returns
A.transpose()

When you run it, you should see:

array([[5, 1, 6],
[1, -1, 2],
[3, 8, 1]])

4 Chapter 1. MATRICES

As you can see, A 6= AT so A is not symmetric. Try another:

create a matrix, B
B = np.array([[5, 1, 6],

[1, -1, 2],
[6, 2, 1]])

B.transpose()

When you run it, you should see:

array([[5, 1, 6],
[1, -1, 2],
[6, 2, 1]])

B is symmetric. You can actually transpose any matrix using this function. But a matrix
cannot be symmetric unless it is square.

Try this code to see what happens when you transpose a rectangular matrix.

create a matrix, J
J = np.array([[5, 1, 3, 0],

[1, -1, 8, 11],
[6, 2, 1,-7]])

J.transpose()

Note that transposing a rectangular matrix changes its dimension from 3 by 4 to 4 by 3.
You should see a transposed matrix, but it’s not symmetric.

array([[5, 1, 6],
[1, -1, 2],
[3, 8, 1],
[0, 11, -7]])

1.1.3 Creating Special Matrices in Python

Use the same file to add this code for creating a zero matrix.

create an 8 by 10 Zero matrix.
C = np.zeros((8, 10))
C

When you run it, you should see:

Section 1.1 TYPES OF MATRICES 5

array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])

Add the following code to create an 8 by 8 Identity matrix.

create an 8 by 8 Identity matrix
D = np.eye(8)
D

When you run it, you should see:

array([[1., 0., 0., 0., 0., 0., 0., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 1., 0., 0., 0., 0., 0.],
[0., 0., 0., 1., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0.],
[0., 0., 0., 0., 0., 0., 0., 1.]])

As you progress in your studies you’ll learn the importance of diagonal matrices and of
extracting the diagonal of a matrix. Let’s see how to extract a diagonal and then to create
a diagonal matrix.

create a matrix
W = np.array([[1, 2, 3, 4],

[5, 6, 7, 8],
[-8, -7, -6, -5],
[-4, -3, -2, -1]])

Extract the main diagonal using np.diag(<array>,<diagonal to extract>). Passing 0 as
the second parameter specifies the main diagonal. A positive value extracts a diagonal
from the upper part. A negative value extracts a diagonal from the lower part. Run this
code then experiment passing other values to see what you get.

print(np.diag(W,0))

6 Chapter 1. MATRICES

When you run it you should see;

array([1, 6, -6, -1])

You can also use np.diag() to create a diagonal matrix from a 1D array. In this case, do
not pass a second paramenter.

Q = np.array([1, 2, 3])
DiagArray = np.diag(Q))
print(DiagArray)

When you run it you should see;

[[1 0 0]
[0 2 0]
[0 0 3]]

Python has functions for extracting upper and lower triangular matrices. Try these:

print(np.triu(W))
print(np.tril(W))

You should see:

[[1 2 3 4]
[0 6 7 8]
[0 0 -6 -5]
[0 0 0 -1]]

[[1 0 0 0]
[5 6 0 0]
[-8 -7 -6 0]
[-4 -3 -2 -1]]

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.

https://kontinua.org/
https://kontinua.org/

Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 3)

A = At =

 3 −2 4

−2 6 2

4 2 3



7

8 Chapter A. ANSWERS TO EXERCISES

	Matrices
	Types of Matrices
	Symmetric Matrices
	Creating Matrices in Python
	Creating Special Matrices in Python

	Answers to Exercises

