
Chapter 1

Subspaces

Recall that, in Chapter ??, we established that all linear systems can be represented in
matrix form as A~x = ~b. In this chapter, we will explore the concept of subspaces, which
are fundamental to understanding the structure of solutions to linear systems.

Quickly, let’s review some vocabulary. The zero vector, denoted as ~0, is the vector where
all components are zero. It will be a column vector of appropriate size n× 1.

If A~x = ~0, where ~b = ~0, then the system is called homogeneous. If A~x = ~b where ~b 6= ~0,
then the system is called non-homogeneous.

1.1 What is a Subspace?

A subspace V of Rn is a subset V of Rn satisfying the following properties:

• The zero vector ~0 is in the subspace.

• If ~u and ~v are in the subspace, then their sum ~u+~v is also in the subspace.

• If ~u is in the subspace and c is a scalar, then the scalar multiple c~u is also in the
subspace.

In short, a subspace is exactly the set of all linear combinations of some collection of
vectors. Additionally, every subpace is a span.

Subspace Span

If V is a subspace of Rn, then there exists a set of vectors

{~v1,~v2, . . . ,~vk} ⊆ Rn

such that
V = span{~v1,~v2, . . . ,~vk}

That is, every vector in V can be written as a linear combination of vectors in V .

Because V is closed under:
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• vector addition, and

• scalar multiplication,

any linear combination of vectors in V must also lie in V .

So if ~u,~v ∈ V and a, b ∈ R, then
a~u+ b~v ∈ V

The converse is also true: any span is a subspace.

span(V) is a subspace of Rn

For example, vectors ~v1 = [1, 0] and ~v2 = [0, 1] span all of R2, since they can be scaled to
fit all of R2.

• the span v1 is a line through ~0

• the span v1, v2 is a line or plane through ~0

• the span of v1, v2, v3 is a line or plane through ~0, or all of R3

We need to review and reinforce some vocabulary that will come up often during this
section. Let’s look at Basis and Dimension.

1.2 Basis and Dimension

A basis of a subspace V is a set of linearly independent vectors that span V .

Basis

A set of vectors {~v1,~v2, . . . ,~vk} ∈ Rn is called a basis for Rn if

• the vectors span Rn, and

• the vectors are linearly independent.

For example, a basis for R3 is given by the standard unit vectors:

V =


10
0

 ,

01
0

 ,

00
1


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Note that the span of V is all of R3, and the vectors in V are linearly independent.

For a subspace V , there are often many possible bases. For example, another basis for R3

is given by the vectors:

W =


11
0

 ,

01
1

 ,

10
1


Put simply, a basis is a smallest possible set of vectors that can be used to build every
vector in the space, with no redundancy. No vector in the basis can be written as a linear
combination of the others.

A standard basis is a special type of basis that is often used for Rn.

Standard Basis
The standard basis for Rn is the set of vectors

{~e1,~e2, . . . ,~en},

where ~ei is the vector in Rn with a 1 in the i-th position and 0 in all other positions.

An example of this is the standard basis for R2:{[
1

0

]
,

[
0

1

]}

Recall we may often simplify this to i hat and j hat notation:{
î, ĵ

}
c1î+ c2ĵ

The standard basis consists of the vectors that point along the coordinate axes. Each
standard basis vector measures exactly one coordinate.

The number of vectors in the basis is called the dimension of the subspace.

Dimension
The dimension of a vector space V is the number of vectors in any basis for V . If V
has a basis consisting of k vectors, then we say that V has dimension k, and write

dim(V) = k.

In particular, the dimension of Rn is n, since the standard basis contains exactly n vectors.
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Properties of Dimension:

• A basis of a subspace Rn contains exactly n vectors.

• If W is a linear subspace of V , then dim(W) ≤ dim(V).

• If V is a finite-dimensional vector space and W is a linear subspace of V with
dim(W) = dim(V), then W = V .

• The space Rn has the standard basis {e1, . . . , en}, where ei is the i-th column of the
corresponding identity matrix. Therefore, Rn has dimension n.

1.3 Nullspace

We now examine a fundamental example of a subspace: the nullspace of a matrix. Recall
that a subspace is a subset of Rn that is closed under vector addition and scalar multipli-
cation and contains the zero vector.

The nullspace of a matrix A, denoted Null(A), is the set of all vectors ~x such that

A~x = ~0.

That is, the nullspace is precisely the solution set of the homogeneous system A~x = ~0.

Nullspace

The nullspace of a matrix A is defined as

Null(A) = {~x ∈ Rn : A~x = ~0}.

The ~x, then represents all vectors that get flattened to origin (~0).

Because the equation A~x = ~0 is homogeneous, its solution set always contains the zero
vector. Moreover, if ~x1 and ~x2 are solutions, then any linear combination of the form

a~x1 + b~x2

is also a solution. For this reason, the nullspace of a matrix is always a subspace of Rn.

1.3.1 Linear Combinations and Span

Recall that a linear combination of vectors ~v1,~v2, . . . ,~vn is any vector of the form

a1~v1 + a2~v2 + · · ·+ an~vn,
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where a1, a2, . . . , an ∈ R are scalars.

The set of all possible linear combinations of a collection of vectors is called their span. If
a subspace can be written as the span of one or more vectors, those vectors describe all
possible directions within the subspace.

1.3.2 Example

Consider the matrix
A =

[
1 2

2 4

]
.

To find the nullspace of A, we solve the homogeneous system A~x = ~0:[
1 2

2 4

] [
x1
x2

]
=

[
0

0

]
.

This corresponds to the system of equations

x1 + 2x2 = 0, 2x1 + 4x2 = 0.

Solving for x1 in terms of x2 gives
x1 = −2x2.

Notice that x1 can be written in terms of x2. This implies linear dependence, the fact that the
vectors can be written as combinations of each other. Thus, every vector in the nullspace
can be written in the form

~x = x2

[
−2

1

]
.

Therefore, the nullspace of A is

Null(A) = span
{[

−2

1

]}
.

Geometrically, this nullspace is a line through the origin in R2, which is a one-dimensional

subspace of R2. The nullspace contains all scalar multiples of the vector
[
−2

1

]
. This tells

us that the solutions to the homogeneous system A~x = ~0 form a line in R2. All vectors
along this line produce the zero vector when substituted into the equation A~x = ~0.
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1.3.3 Example

Find a basis for the nullspace of the matrix

A =


1 2 −1 0

2 4 −2 0

0 1 1 3

0 2 2 6

 .

First, find the RREF form of A. Notice immediately that R2 = 2R1 and R4 = 2R3 in A, so
we will definitely have free rows. We get that

rref(A) =


1 0 −3 −6

0 1 1 3

0 0 0 0

0 0 0 0


Our ~x vector has to be the same size as our column, so it must live in R4. This gives us

~x =


x1
x2
x3
x4

.
So finding A~x = ~0 provides the systems of equations:{

x1 − 3x3 − 6x4 = 0

x2 + x3 + 3x4 = 0

We can rewrite this as:

{
x1 = 3x3 + 6x4

x2 = −x3 − 3x4
=⇒ x3


3

−1

1

0

+ x4


6

−3

0

−1



So a basis for the nullspace is formed by

Null(A) =




3

−1

1

0

 ,


6

−3

0

−1



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Exercise 1 Finding a Basis for a Nullspace

.

Consider the matrix

A =


1 −1 1 3 2

2 −1 1 5 1

3 −1 1 7 0

0 1 −1 −1 −3


When put in reduced row echelon form,

rref(A) =


1 0 0 2 −1

0 1 −1 −1 −3

0 0 0 0 0

0 0 0 0 0


a Find a basis for the nullspace of A.

b Find a vector~x =


x1
x2
x3
x4
x5

 in the nullspace

of A such that x1 = −3, x3 = 1, and
x4 = 2.

Answer on Page 13

Working Space

Key Idea: Nullspace and Linear Independence

Solving for the nullspace of a matrix tells you whether a set of vectors is linearly
independent or linearly dependent.

• If the nullspace contains only the zero vector, then the vectors are linearly inde-
pendent.

• If the nullspace contains a nonzero vector, then the vectors are linearly depen-
dent.
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Practical test (via RREF):

• If every column has a pivot, the columns are linearly independent.

• If one or more columns lack a pivot, the columns are linearly dependent.

Equivalently, the equation Ax = 0 has a nontrivial solution if and only if the columns
of A are linearly dependent.

1.4 Row Space

The row space of a matrix A, denoted Row(A), is the subspace of Rn spanned by the row
vectors of A. Each row vector can be viewed as a vector in Rn, and the row space consists
of all linear combinations of these row vectors.

Row Space

The row space of a matrix A is defined as

Row(A) = span{row1, row2, . . . , rowm},

where rowi represents the i-th row of the matrix A. The row space consists of all
directions in Rn that can be built from the rows of the matrix. Note that we are
observing the matrix before it is transformed into RREF or altered in any way.

Another way to think about it is that the row space represents all possible linear combi-
nations of the equations represented by the rows of the matrix A. Each row is ”tested”
on by ~x to produce a component of the output vector A~x. Equivalently, the row space is
the set of all vectors that can be formed by adding and scaling the rows of A.

When we compute:
A~x

each row of A gets dotted with ~x to produce a component of the output vector.

If each of the rows of A are denoted as ~r1,~r2, . . . ,~rm, then A~x,
~r1 · ~x
~r2 · ~x

...
~rm · ~x



The row space, then, is a subspace of Rn that captures all possible linear combinations of
the rows of A. The row space consists of all possible tests on ~x that can be performed by
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the rows of A.

A =


—~r1—
—~r2—

...
—~rm—

 with ~ri ∈ Rn

Why does the row space live in Rn?

• ~x has n components and lives in Rn, and

• each row ~ri has n components and lives in Rn

1.4.1 Example

Consider the matrix
A =

[
1 2 −1

0 1 3

]

The row vectors of A are

~r1 =
[
1 2 −1

]
, ~r2 =

[
0 1 3

]

dotting them with an ~x of appropriate size gives

A~x =

[
~r1 · ~x
~r2 · ~x

]
The row space of A is the span of its row vectors:

Row(A) = span
{[
1 2 −1

]
,
[
0 1 3

]}

1.5 Column Space

The column space of a matrix A, denoted Col(A), is the subspace of Rm spanned by the
column vectors of A. Each column of A can be viewed as a vector in Rm, and the column
space consists of all linear combinations of these column vectors.

Column Space

The column space of a matrix A is defined as

Col(A) = span{~c1,~c2, . . . ,~cn},
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where ~ci represents the i-th column of the matrix A. The column space consists of
all vectors in Rm that can be formed as linear combinations of the columns of A.

Equivalently, the column space can be described as the set of all possible outputs of the
matrix:

Col(A) = {A~x : ~x ∈ Rn}.

The columns of the original matrix A that correspond to pivot columns in RREF(A) span
the column space of A. We will discuss this idea further in a future chapter, but it corre-
sponds to the fact that the pivot columns are linearly independent and form a basis for
the column space.

1.5.1 Example

Consider the matrix

A =


1 3 1 4

2 7 3 9

1 5 3 1

1 2 0 8

 .

After applying elementary row operations, we find that the RREF of A is

RREF(A) =


1 0 −2 0

0 1 1 0

0 0 0 1

0 0 0 0

 .

Since there is a free row, there is a dependent row in the original matrix. The pivot columns
are columns 1, 2, and 4. Thus, a basis for the column space of A is given by the original
columns 1, 2, and 4: 

1

2

1

1

 ,


3

7

5

2

 ,


4

9

1

8

 .

Thus the subspace spans R4 and consists of all linear combinations of these three vectors.
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Exercise 2 Nullspace, Rowspace, and Columnspace

.

Consider the matrix

A =


1 2 −1 3

2 4 −2 6

1 1 0 2

0 1 1 1

 .

a Compute the reduced row echelon
form of A.

b Identify the pivot columns and free
columns of A. What does this tell
you about the solutions?

c Find a basis for the nullspaceN(A).
What is the dimension of N(A)?

d Find a basis for the row space R(A).
What is the dimension of R(A)?

e Find a basis for the column space
C(A). State clearly where the vec-
tors for the basis come from.

Answer on Page 14

Working Space

1.6 Summary

In this chapter, we have established a few different common subspaces: the Nullspace,
Rowspace, and Columnspace. Each of these subspaces captures different structural infor-
mation about a matrix and the system of equations it represents. The nullspace describes
all input vectors that are sent to the zero vector, the column space contains all possible
outputs of the matrix, and the row space encodes the independent constraints imposed
by the system.

We have now set the stage for a new way of viewing matrices. Rather than thinking of a
matrix solely as a collection of numbers or equations, we can begin to interpret a matrix
as a transformation – a rule that takes input vectors and maps them to output vectors.
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In the next few chapters, we will build on our understanding of subspaces to study how
matrices act on vectors and reshape space, providing a unifying viewpoint for many of
the ideas introduced so far. We will look at the geometric implications of matrices and
how they transform space. This is the basis of many computer graphic programs, like
calculating lengths of shadows in VR games or simulations!

Before ending this chapter, take a look at this graphic. It shows the relationship between
the subspaces we talked about, plus a new one: Null(AT ), the transpose of the nullspace.
If matrix A has size m×n, then AT has size n×m. Note which subspaces live in Rn and
which live in Rm.

Rn Rm
N(A)

R(A)

N
(
A>)

C(A)

A
m×n

A>
n×m

N(A) ⊥ R(A)
N(A) · R(A) = 0

N
(
A>) ⊥ C(A)

N
(
A>) · C(A) = 0

Instead of asking what vectors solve A~x = ~0, we will begin asking:

What does the matrix A do to an arbitrary vector?

The big take away: A matrix of size m × n can be viewed as a rule that takes vectors in
Rn as inputs and produces vectors in Rmas outputs.

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.

https://kontinua.org/
https://kontinua.org/


Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 7)

a Solving A~x = ~0 gives us two equations:{
x1 + 2x4 − x5 = 0

x2 − x3 − x4 − 3x5 = 0
=⇒ {

x1 = −2x4 + x5

x2 = x3 + x4 + 3x5

So we establish x3, x4, and x5 as bound or fixed variables. So, every vector in the
nullspace has the form

~x =


−2x4 + x4

x3 + x4 + 3x4
x3
x4
x4


or, equivalently

~x = x3


0

1

1

0

0

+ x4


−2

1

0

1

0

+ x4


1

3

0

0

1


So a basis can be formed by the set


0

1

1

0

0

 ,


−2

1

0

1

0

 ,


1

3

0

0

1




b We are given a vector ~x =


−3

x2
1

2

x5

.
Recall that we have x1 = −2x4 + x5, so inputting our knowns we can say −3 =
−2(2) + x5 =⇒ = x5 = 1.

13
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We can then solve x2 = x3 + x4 + 3x5 for x2:

x2 = 1+ 2+ 3(1) = 6

These two variables give us the ~x

~x =


−3

6

1

2

1



Answer to Exercise 2 (on page 11)

a

rref(A) =


1 0 0 1

0 1 0 1

0 0 1 0

0 0 0 0


b Columns 1, 2, and 3 are pivot columns (containing a pivot). Column 4 is a non-pivot

or free column. This tells you that there are 3 fixed variables, and 1 free one. The
nullspace will be 1 dimensional.

c We have the system of equations:

x1 + x4 = 0,

x2 + x4 = 0,

x3 = 0.

Letting x4 be free, ~x = x4


−1

−1

0

1

 . The N(A) =



−1

−1

0

1


 with a dimension of 1.

d The row space is the subspace spanned by the rows of A. A convenient basis for the
row space is given by the nonzero rows of rref(A). Thus a basis is{[

1 0 0 1
]
,
[
0 1 0 1

]
,
[
0 0 1 0

]}
.

These three rows are linearly independent, and they span the row space because row
reduction did not create any new row space, just simplified the set. The rowspace
has rowspace(A) = 3.

e For the column space, we must take columns from the original matrix A. The usual
rule is: pivot columns of the original A form a basis for C(A). Since the pivot
columns are 1, 2, 3, a basis is the set of the first three columns of A
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c1 =


1

2

1

0

 , c2 =


2

4

1

1

 , c3 =


−1

−2

0

1


and the column space is the span of each original pivot column:

C(A) = span{c1, c2, c3}
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Index

basis, 3

column space, 9

dimension, 3

homogeneous, 1

linear dependence, 5

nullspace, 4
and linear independence, 7

row space, 8
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