
Chapter 1

Data tables in SQL

Most organizations keep their data as tables inside a relational database management
system. Developers talk to those systems using a language called SQL (“Structured Query
Language”).

Some relational database managers are pricey products you may have heard of before:
Oracle, Microsoft SQL Server. Some are free: PostgreSQL or MySQL. These are server
software that client programs talk to over the companies network.

There is a library, called sqlite, that lets us create files that hold tables. We can use SQL
to create, edit, and browse those tables. sqlite is free, fast, and very easy to install. So we
will use sqlite instead of a networked database management system.

If you look in your digital resources, you will find a file called bikes.db. I created this
file using sqlite, and now you will use sqlite to access it.

In the terminal, get to the directory where bikes.db lives. To open the sqlite tool on that
file:

> textbfsqlite3 bikes.db

(If your system complains that there is no sqlite3 tool, you need to install sqlite. See this
website: https://sqlite.org/)

Please follow along: type each command shown here into the terminal and see what
happens.

We mostly run SQL commands in this tool, but there are a few non-SQL commands that
all start with a period. To see the tables and their columns, you can run .schema:

sqlite> .schema
CREATE TABLE bike (bike_id int PRIMARY KEY, brand text, size int,

purchase_price real, purchase_date date, status text);

That is the SQL command that I used to create the bike table. You can see all the columns
and their types.

You want to see all the rows of data in that table?

1

https://sqlite.org/

2 Chapter 1. DATA TABLES IN SQL

sqlite> select * from bike;
4997391|GT|57|269.61|2009-05-03|rented
5429447|Cannondale|50|215.91|2002-02-17|broken
5019171|Trek|58|251.17|1985-07-11|rented
3000288|Cannondale|57|211.08|1993-01-05|broken
880965|GT|52|281.75|1995-08-02|available
...

You will see 1000 rows of data!

The SQL language is not case-sensitive, so you can also write it like this:

sqlite> SELECT * FROM BIKE;

Often you will see SQL with just the SQL keywords in all caps:

sqlite> SELECT * FROM bike;

The semicolon is not part of SQL, but it tells sqlite that you are done writing a command
and that it should be executed.

SQL lets you choose which columns you would like to see:

sqlite> SELECT bike_id, brand FROM bike;
4997391|GT
5429447|Cannondale
5019171|Trek
3000288|Cannondale
...

Using WHERE, SQL lets you choose which rows you would like to see:

sqlite> SELECT * FROM bike WHERE purchase_date > '2009-01-01' AND brand = 'GT';
4997391|GT|57|269.61|2009-05-03|rented
326774|GT|56|165.0|2009-06-27|available
264933|GT|52|302.43|2009-07-09|available
5931243|GT|55|173.56|2009-11-26|rented
4819848|GT|51|221.71|2009-12-11|rented
9347713|GT|52|232.32|2009-06-13|available
3019205|GT|58|262.94|2009-08-22|available

Using DISTINCT, SQL lets you get just one copy of each value:

3

sqlite> SELECT DISTINCT status FROM bike;
rented
broken
available

Busted
Flat tire
good
out
Rented

You can also edit these rows. For example, if you wanted every status that is Busted to
be changed to broken. You can use an UPDATE statement:

sqlite> UPDATE bike SET status='broken' WHERE status='Busted';
sqlite> SELECT DISTINCT status FROM bike;
rented
broken
available

Flat tire
good
out
Rented

You can insert new rows:

sqlite> INSERT INTO bike (bike_id, brand, size, purchase_price, purchase_date, status)
...> VALUES (1, 'GT', 53, 123.45, '2020-11-13', 'available');

sqlite> SELECT * FROM bike WHERE bike_id = 1;
1|GT|53|123.45|2020-11-13|available

You can delete rows:

sqlite> DELETE FROM bike WHERE bike_id = 1;
sqlite> SELECT * FROM bike WHERE bike_id = 1;

To get out of sqlite, type .exit.

4 Chapter 1. DATA TABLES IN SQL

Exercise 1 SQL Query

.Execute an SQL query that returns the
bike_id (no other columns) of every Trek
bike that cost more than $300.

Answer on Page 7

Working Space

1.1 Using SQL from Python

The people behind sqlite created a library for Python that lets you execute SQL and fetch
the results from inside a python program.

Let’s create a simple program that fetches and displays the bike ID and purchase date of
every Trek bike that cost more than $300.

Create a file called report.py:

import sqlite3 as db

con = db.connect('bikes.db')
cur = con.cursor()

cur.execute("SELECT bike_id, purchase_date FROM bike WHERE purchase_price > 330 AND brand='Trek'")
rows = cur.fetchall()

today = datetime.date.today()
for row in rows:

print(f"Bike {row[0]}, purchased {row[1]}")

con.close()

When you execute it, you should see:

> python3 report.py
Bike 4128046, purchased 2007-08-06
Bike 7117808, purchased 1995-03-12
Bike 7176903, purchased 1986-07-03
Bike 827899, purchased 2009-03-14

Section 1.1 USING SQL FROM PYTHON 5

Bike 363983, purchased 1970-08-16

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.

https://kontinua.org/
https://kontinua.org/

Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 4)

SELECT bike_id FROM bike WHERE purchase_price > 330 AND brand='Trek'

7

8 Chapter A. ANSWERS TO EXERCISES

	Data tables in SQL
	Using SQL from Python

	Answers to Exercises

