CHAPTER |

Span

1.1 Spans of Vectors

Knowing whether two vectors are linearly dependent or independent allows us to ac-
curately describe the span of those two vectors (this expands to include any number of
vectors). In the previous chapter, we saw that linear combinations of two linearly depen-
dent vectors can only make vectors that lie on the same line as the two starting vectors.
We saw this in 2D, but it also applies to 3D vectors. Consider the two vectors u = (2,4, 3]
and v = [4, 8, 6], shown in figure 1.1.
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Figure 1.1: 3-dimensional vectors, u and v

Notice that these two vectors are colinear (that is, they are on the same line), therefore
they are linearly dependent and any combination of u and v will lie on the same line as u
and v. Therefore, we say the the span of w and v is a line. In fact, for any size list of linearly
dependent vectors (whether it’s one vector or one hundred), the span of that list is a line.

Now that you have a sense of what a span is, it is time for the formal mathematical
definition. A vector span is the collection of vectors obtained by scaling and combining
the original set of vectors in all possible proportions. Formally, if the set S = {v1,vy,...,Vpn}
contains vectors from a vector space V, then the span of S is given by:

Span(S) ={a1v1 + aava + -+ -+ anvn : a1, az, ..., an € R} (1.1)

This means that any vector in the Span(S) can be written as a linear combination of the
vectors in S.



2 Chapter 1. SPAN

1.1.1 Spans of Independent Vectors

What if our list of vectors aren'’t all linearly dependent on each other? We’ve seen in
2 dimensions that any two independent vectors can be linearly combined to create any
vector in RZ. So, the span is described as a plane (in fact, it is the entire xy-plane, which
we also call R?). How does this expand to 3-dimensional vectors? Let’s again consider
two 3-dimensional vectors: u = [2,4,3] and v = [2,1,0], as shown in figure 1.2.
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Figure 1.2: Linearly independent 3-dimensional vectors, u and v

Just like in two dimensions, any two independent vectors in R® define a plane (see figure
1.3). This also applies to higher dimensions: the span of any two linearly independent
vectors is a plane.

Figure 1.3: Linearly independent 3-dimensional vectors, u and v, define a plane.

If we have 3 independent vectors, then we can define a 3-dimensional space. To understand
this, first imagine a plane formed by two independent 3-dimensional vectors like in figure
1.3). If a third independent vector is introduced, it must not lie on the plane: if it did, it
would be a linear combination of the first two and therefore not independent. This third
vector allows us to move off the plane, and therefore all three independent vectors span
R3.

In review, 1 vector or set of dependent vectors span a line, 2 vectors or sets of dependent
vectors span a plane, and 3 vectors or sets of dependent vectors span R3.

Example: Do the vectors r = [5,4,—6], s = [0, —5,—10], and t = [0, 2,4,] span a line, plane,
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or R3?

Solution: We need to determine the number of independent vectors. First, we’ll check if r
and s are independent. They are independent if the only solution to the equation below
isa;=a; =0:

a; [5,4,—6] + a, [0,—5,—10] = [0, 0, 0]

Which we can write as a system of equations:

5a; +0a; =0
4611 —5(12 =0
—6(12 — 1002 =0

From the first equation, we see that 5a; = 0 which implies that a; = 0. Substituting that
into the second equation:
4(0) — 5(12 =0

—5(12 =0

azzo

Therefore, vectors r and s are independent. Now let’s check r and t:

a1 [5,4,—6) + a3 [0,2,4,] = [0,0, 0]

Which we can re-write as a system of equations:

5a;+0a; =0
4a;4+2a; =0
—6a; +4a; =0

Again, from the first equation, we see that a; = 0. Substituting into the second:

4(0) 4 2a; =0
2(12 =0
(1220

Therefore, r and t are also independent. Last, we’ll check s and t for independence:

ap [0,—5,—10] + a» [0,1,2,] = [0, 0, 0]
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The system of equations:

0a; +0a; =0
—S5a14+a, =0
—10a; +2a; =0

The first equation doesn’t tell us anything, since it would be true no matter what a; and
ay are. We can solve the second equation for a, and substitute into the third equation:

a; = 5CL]

—10a; +2(5a;) =0
—10a; +10a; =0

Which is also true for all a;. In fact, there are many solutions to a; [0, =5, —10]4+a; [0,1,2,] =
[0,0,0], a; = 1 and a, = 5 is an example. Therefore, s and t are dependent. So, we really
have 2 independent vectors in the list, and therefore span(r, s, t) is a plane.

Exercise 1 Determining Span

————— Working S
Geometrically describe (line, plane, or ‘ oriing space

R3) the span of the list of vectors.
1. [1,2,4] and [—2,—4,—8]
2. (2,0,0] and [0, 1, 3]
3. [3,0,0] and [0, 3, 3] and 3, 3, 2]

; Answer on Page 11 4

1.2 Determinants

Checking all these vectors by hand takes a long time. What if you had a list of 5, 10, or
even 100 vectors? The determinant of a matrix is a scalar value that indicates whether the
columns of a matrix are linearly independent. So, if you put all your vectors together in
a matrix and take the determinant of that matrix, the result will tell you if all the vectors
are independent or not. For a 2D matrix, the determinant is the area of the parallelogram



Section 1.2 DETERMINANTS 5

defined by the column vectors. For a 3D matrix, the determinant is the volume of the
parallelepiped (a six-dimensional figure formed by six parallelograms, such as a cube).!

Let’s plot the parallelogram for this matrix (see figure 1.4):

o
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Figure 1.4: A parallelogram constructed from vectors [2, 0] and [0, 2]
The formal definition for calculating the determinant of a 2 by 2 matrix is:

det(A)=(a-d)—(b-c)

[t ]

For the matrix plotted above, the determinant is (2% 2) — (0% 0). You can also see that 4.0
is the area, base (2) times height (2).

where

You can use the determinant to see what happens to a shape when it goes through a linear
transformation. Let’s scale the 2 by 2 matrix by 4:

o4

Plot it (see figure 1.5):

Find the determinant.

!Note that determinants can only be found for n x n matrices.
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e

2 4 6 8
Figure 1.5: Scaling the matrix also scales the parallelogram.
(8x8)—(0%x0) =64

You can see that scaling the matrix scaled the area by the scaling factor squared (see figure
1.6).

Figure 1.6: Scaling a matrix by a constant c increases the area of the parallelogram by a
factor of c?.

We can show why this is true mathematically. Suppose we have a 2 by 2 matrix A:

r=[y ]
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Then det(A) = wz — xy. We can scale this matrix by a constant, c:

CA:C-|:W x]:[cw cx]
y z cy cz

And we can take the determinant:

cw X

det(cA) = det ([cy cz}) =cw(cz) —cx(cy) = c(wz —xy) = ¢? - det(A)

Therefore, scaling a 2 by 2 matrix by a factor changes the determinant by that factor
squared. What about higher dimensions? If each side of a cube were scaled by a factor
of ¢, then the volume of the cube would change by a factor of c¢* (feel free to confirm this
yourself). And if a tesseract (a four-dimensional cube) had each side scaled by a factor
of ¢, then the hypervolume (four-dimensional volume) would be scaled by a factor of c*.
Do you notice a pattern?

In fact, scaling an n x n matrix by a constant factor, c, changes the determinant of that
n X n matrix by a factor of c™.

What happens if the columns of a matrix are not independent? Let’s plot this matrix (see

figure 1.7):
21
i

Y

1 2 3 4
Figure 1.7: The vectors [H and [ﬂ are co-linear, so there is no area between them and

the determinant of [i H is zero.

One vector overwrites the other. As you can see, the area is 0 because there is no space
between the vectors. Therefore, the columns of the matrix are linearly dependent.
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Exercise 2 Finding the Determinate

Plot the parallelogram represented by the

‘— Working Space

columns of the matrix. What is the area
of this parallelogram?

(1 4
—3 1
5 —5
5 —1

[0 -5
-2 0

; Answer on Page 11 4

Calculating the determinant for a 2 by 2 matrix is easy. For a larger matrix, finding the
determinant is more complex and requires breaking down the matrix into smaller matrices
until you reach the 2x2 form. The process is called expansion by minors. For our purposes,
we simply want to first check to see if a matrix contains linearly independent rows and
columns before using our Python code to solve.

Modify your code so that is uses the np.linalg.det() function. If the determinant is not
zero, then you can call the np.linalg.solve() function. Your code should look like this:

if (np.linalg.det(D) != 0):
j = np.linalg.solve(D,e)
print(j)
else:
print ("Rows and columns are not independent.")

1.3 Where to Learn More

Watch this video on Linear Combinations and Vector Spans from Khan Academy: http://rb.
gy/glsnk

The Wolfram Demonstrations website has a fun, interactive demo where you can en-
ter values for 2D and 3D matrices and see how the area or volume changes. https:
//demonstrations.wolfram.com/DeterminantsSeenGeometrically/#more


http://rb.gy/g1snk
http://rb.gy/g1snk
https://demonstrations.wolfram.com/DeterminantsSeenGeometrically/#more
https://demonstrations.wolfram.com/DeterminantsSeenGeometrically/#more
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If you are curious about the Expansion of Minors, see: https://mathworld.wolfram.com/
DeterminantExpansionbyMinors.html

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.


https://mathworld.wolfram.com/DeterminantExpansionbyMinors.html
https://mathworld.wolfram.com/DeterminantExpansionbyMinors.html
https://kontinua.org/
https://kontinua.org/




APPENDIX A

Answers to Exercises

Answer to Exercise 1 (on page 4)

1. Since the second vector is a scalar multiple of the first, the span of S = {[1, 2,4], [-2, —4, 8]}
is a line.

2. Since the second vector is not a scalar multiple of the first, the span of S = {[2,0,0,], [0, 1, 3]}
is a plane.

3. None of the three vectors are scalar multiples or linear combinations of the other
two. Therefore, the span of S = {[3,0,01,[0,3, 3], [3, 3, 2]} is R3.

Answer to Exercise 2 (on page 8)

1. Our two vectors from the columns of the matrix are [1,—3] and [4, 1]. Plotting:

2 &
Y

—4 L

The area of this parallelogram is the same as the determinant of the matrix:
1 4
det([_3 1]>—1-1—(4‘—3)—1+12—13

2. Our two vectors from the columns of the matrix are [5,5] and [—5,—1]. Plotting:

11
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®1y
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6 L4 = 2 4 6
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The area of this parallelogram is the same as the determinant of the matrix:

det(E :ﬂ) =5.—1—(=5-5)=—-5+25=20

3. Our two vectors from the columns of the matrix are [0, —2] and [-5, 0]. Plotting:

Ty

Y

2

This is a rectangle, and we can see the area is 5 - 2 = 10. However, the determinant

is:
0 -5
det([_z O})-O-O—(—S-—Z)—O—m——m

We will discuss this unusual response in a future chapter.
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