
Chapter 1

Convergence Tests for Series

1.1 Test for Divergence

Recall from the previous chapter that if the terms of a series do not approach zero as n

approaches infinity, then the series is divergent. This is the Test for Divergence, and there
are two possible outcomes. For a series

∑∞
n=1 an:

If lim
n→∞an 6= 0, then the series diverges

If lim
n→∞an = 0, then the test is inconclusive

It is important to remember that the Test for Divergence cannot tell us conclusively that a
series converges. Rather, it only identifies series that are divergent.

Example: Apply the Test for Divergence to the series
∑∞

n=1

√
n and

∑∞
n=1

1
n

Solution: limn→∞√
n = ∞ 6= 0. Therefore, the series

∑∞
n=1

√
n is divergent.

limn→∞ 1
n = 0. Therefore, the series

∑∞
n=1

1
n may be divergent or convergent. This is the

harmonic series, which we proved to be divergent in the previous chapter. This is a good
example which demonstrates that just because limn→∞ an = 0 does not mean the series
is convergent.

1.2 The Integral Test

We were able to determine the exact value of some infinite series because it was possible
to write the nth partial sum, sn, in terms of n. For example, we determined that the nth

partial sum of
∑n

i=1
1
2i

is sn = 1 − 1
2n . However, it is not always possible to do this. How

can we estimate the value of an infinite series in cases where we can’t explicitly write sn
in terms of n?

Consider the series
∑∞

i=1
1
i2
. The first few terms are:

∞∑
i=1

1

2i
=

1

12
+

1

22
+

1

32
+

1

42
+

1

52
+ · · ·

The series is decreasing, but is it convergent? Let’s plot this series on an xy-plane (see
figure 1.1).
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1 2 3 4 5 6

i

1
2i

Figure 1.1: The first 5 terms of
∑∞

i=1
1
2i

We can overlay the function y = 1
2x (figure 1.2). We can draw rectangles of width 1 and

height 1
x2

(see figure 1.3). The area of the first n rectangles is equal to the nth partial sum.

1 2 3 4 5 6

i

1
2i

Figure 1.2: The first 5 terms of
∑∞

i=1
1
2i

lie on the curve y = 1
x2

This should remind you of a Riemann sum. Since the total area of the rectangles is less
than the area under the curve, we can state:

∞∑
i=1

1

2i
<

∫∞
0

1

x2
dx

We can exclude the first rectangle and also state that:

∞∑
i=1

1

2i
< 1+

∫∞
1

1

x2
dx
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1 2 3 4 5 6

area = 1
12

area = 1
22

area = 1
32

area = 1
42

area = 1
52

i

1
2i

Figure 1.3: The partial sum
∑n=5

i=1
1
2i

is equal to the area of the rectangles

We can evaluate this integral: ∫∞
1

1

x2
dx = lim

t→∞
[∫ t

1

1

x2
dx

]

= lim
t→∞ −1

x
|tx=1 = lim

t→∞
(
−1

t

)
−

−1

1
= 0− (−1) = 1

And therefore: ∞∑
i=1

1

2i
< 1+ 1 = 2

This means the series
∑∞

i=1
1
2i

is bounded above. Since the series is also monotonic (each
term is positive, so the value of the sum increases as n increases), we can state that the
sum is convergent!

Let’s look at a divergent example:
∑∞

i=1
1√
x
. Again, we will make a visual, but this time

we will draw rectangles that lie above the curve y = 1√
x
(see figure 1.4). In this case,∑∞

i=1
1√
x
>

∫∞
1

1√
x
dx. Let’s evaluate the integral:∫∞

1

1√
x
dx = lim

t→∞
[∫ t

1

1√
x
dx

]
= lim

t→∞
[
2
√
x
]t
x=1

= lim
t→∞

(
2
√
t
)
− 2

√
1 = ∞− 2 → divergent

Since the integral diverges to infinity and the series is greater than the integral, the series
must also diverge to infinity. This is another case where a monotonic decreasing series is
not convergent!
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1 2 3 4 5 6

area = 1√
1
area = 1√

2
area = 1√

3
area = 1√

4
area = 1√

5

n

Figure 1.4:
∑∞

i=1
1√
x
>

∫∞
1

1√
x
dx

This leads us to the Integral Test. If f is a continuous, positive, decreasing function on
the interval x ∈ [1,∞) and an = f(n), then the series

∑∞
n=1 an converges if and only if∫∞

1 f(x)dx is convergent. Subsequently, if
∫∞
1 f(x)dx is divergent, then the series is also

divergent.

Example: Is the series
∑∞

i=1
1

n2+1
convergent or divergent?

Solution: To apply the integral test, we define f(x) = 1
x2+1

, which is a positive, decreasing
function on the interval x ∈ [1,∞).∫∞

1

1

x2 + 1
dx = lim

t→∞
∫ t
1

1

x2 + 1
dx

= lim
t→∞ [arctan x]tx=1 = lim

t→∞ (arctan t) − arctan 1 =
π

2
−

π

4
=

π

4

Because the integral
∫∞
1

1
x2+1

dx converges, so does the series
∑∞

n=1
1

n2+1
.
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Exercise 1

.Use the integral test to determine if the
following series are convergent or diver-
gent.

1.
∑∞

n=1 2n
−3

2.
∑∞

n=1
5

3n−1

3.
∑∞

n=1
n

3n2+1

Answer on Page 21

Working Space
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Exercise 2

.Apply the Integral Test to show that p-
series

∑∞
n=1

1
np are convergent only when

p > 1 (hint: consider the cases p ≤ 0,
0 < p < 1, p = 1 and p > 1).

Answer on Page 21

Working Space

1.2.1 Using Integrals to Estimate the Value of a Series

Recall that
∑∞

i=1 ai = a1+a2+a3+ · · · = s and that the nth partial sum, often represented
as sn, is sn = a1+a2+ · · ·+an−1+an. Then we can define the nth remainder Rn = s− sn.
Expanding s and sn, we see that:

Rn = [a1 + a2 + · · ·+ an−1 + an + an+1 + · · · ] − [a1 + a2 + · · ·+ an−1 + an]

Rn = [a1 − a1] + [a2 − a2] + · · ·+ [an−1 − an−1] + [an − an] + an−1 + an−2 + · · ·

Rn = an+1 + an+2 + an+3 + · · ·

Just like the integral test, suppose there is some continuous, positive, decreasing function
such that an = f(n). The we can represent Rn as the right Riemann sum with width
∆x = 1 from x = n to ∞. Since the rectangles are below the curve (see figure 1.5), we can
state that Rn ≤

∫∞
n f(x)dx.

Similarly, we can represent Rn as the left Riemann sum with width ∆x = 1 from x = n+ 1

to ∞. This time the rectangles are above the curve (see figure 1.6), and we can state that
Rn ≥

∫∞
n+1 f(x)dx. Putting this all together, we have an estimate for the remainder, Rn,

from the integral test:
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n

an+1 an+2 an+3 · · · · · · · · · x

y

Figure 1.5: Rn ≤
∫∞
n f(x)dx

Suppose there is a function such that f(k) = ak, where f is a continuous, positive, decreas-
ing function for x ≥ n and

∑
an is convergent. Then,

∫∞
n+1 f(x)dx ≤ Rn ≤

∫∞
n f(x)dx,

where Rn is s− sn.

n+ 1

an+1 an+2 an+3 · · · · · · x

y

Figure 1.6: Rn ≥
∫∞
n+1 f(x)dx

Example: Approximate the sum of the series
∑∞

n=1
3
n3 by finding the 10th partial sum.

Estimate the error of this approximation.

Solution: Using a calculator, you can find the 10th partial sum:

10∑
n=1

3

n3
=

3

13
+

3

23
+

3

33
+ · · ·+ 3

103
≈ 3.593 = s10

Recall that the remainder, R10 is the difference between the actual sum, s, and the partial
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sum, s10. Using the integral test to estimate the remainder, we can state that:

R10 ≤
∫∞
10

3

x3
dx =

3

2(10)2
=

3

200
= 0.015

Therefore, the size of the error is at most 0.015.

Example: How many terms are required for the error to be less than 0.0001 for the sum
presented above?

Solution: We are looking for an n such that Rn ≤ 0.0001. Recalling that Rn ≤
∫∞
n

3
x3

dx,
we need to find an n such that

∫∞
n

3
x3

dx ≤ 0.0001.

∫∞
n

3

x3
dx ≤ 0.0001

−1

6x2
|∞x=n ≤ 0.0001

lim
x→∞ −1

6x2
−

−1

6n2
≤ 0.0001

0+
1

6n2
=

1

6n2
≤ 0.0001

1 ≤ 0.0006n2

1667 ≤ n2

40.8 ≤ n → n = 41

Therefore, s− s41 ≤ 0.0001 and the partial sum Σ41
n=1

3
n3 is less than 0.0001 from the value

of the infinite sum
∑∞

n=1
3
n3 .
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Exercise 3

.

1. Find the partial sum s10 of the se-
ries

∑∞
n=1

1
n4 .

2. Estimate the error from using s10
as an approximation of the series.

3. Use sn +
∫∞
n+1

1
x4

dx ≤ s ≤ sn +∫∞
n

1
x4

dx to give an improved es-
timate of the sum.

4. The actual value of
∑∞

n=1
1
n4 is π4

90 .
Compare your estimate with the ac-
tual value.

5. Find a value of n such that sn is
within 0.00001 of the sum.

Answer on Page 22

Working Space

1.3 Comparison Tests

In comparison tests, we compare a series to a known convergent or divergent series. Take
the series

∑∞
n=1

1
3n+3 . This is similar to

∑∞
n=1

1
3n , which is a geometric series that converges

to 1
2 . Notice that:

1

3n + 3
<

1

3n
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1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

n

sn
Σn
i=1

1
3n

Σn
i=1

1
3n+3

Figure 1.7:
∑n

i=1
1

3n+3 < Σn
i=1

1
3n for all n

Which implies that ∞∑
n=1

1

3n + 3
< Σ∞

n=1

1

3n

Since
∑∞

n=1
1
3n is convergent, it follows that

∑∞
n=1

1
3n+3 is also convergent (see figure 1.7).

As you can see, since
∑∞

n=1
1
3n approaches 1

2 ,
∑∞

n=1
1

3n+3 must be ≤ 1
2 and therefore con-

vergent.

1.3.1 The Direct Comparison Test

F For the Direct Comparison Test, we compare the terms an to bn directly. Take
∑

an

and
∑

bn to be series with positive terms. Then,

1. If an ≤ bn and
∑

bn is convergent, then
∑

an is also convergent.

2. If an ≥ bn and
∑

bn is divergent, then
∑

an is also divergent.

We already discussed why the first part is true above. The second part follows a similar
argument: if an is greater than bn, then you can imagine that as

∑
bn grows and diverges,

it is pushing upwards on
∑

an, meaning that
∑

an must also diverge. Consider the series∑∞
n=1

2 lnn
n . For n ≥ 2, 2 lnn > 1, and therefore if

∑∞
n=1

1
n diverges, then

∑∞
n=1

2 lnn
n must

also diverge. We recognize the harmonic series
∑∞

n=1
1
n is divergent. Therefore,

∑∞
n=1

2 lnn
n

is also divergent (see figure 1.8).
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2 4 6 8

1

2

3

4

n

sn Σn
i=1

1
n∑n

i=1
2 lnn
n

Figure 1.8:
∑n

i=1
2 lnn
n >

∑n
i=1

1
n for n ≥ 4

1.3.2 The Limit Comparison Test

Consider the series
∑∞

n=1
1

2n−1 . We may want to compare this to the convergent series∑∞
n=1

1
2n . The direct comparison test isn’t helpful here, since 1

2n−1 > 1
2n , so

∑∞
n=1

1
2n

doesn’t put a cap on
∑∞

n=1
1

2n−1 like our earlier example (see figure 1.7). In a case such
as this, we can use the Limit Comparison Test, which states that:
If
∑

an and
∑

bn are series with positive terms and limn→∞ an
bn

= c > 0, then either both
series converge or both series diverge.

Let’s apply this to the series
∑∞

n=1
1

2n−1 . We know that
∑∞

n=1
1
2n converges, since it is a

geometric series with r < 1.

lim
n→∞

1
2n−1
1
2n

= lim
n→∞ 1

2n − 1
· 2

n

1

= lim
n→∞ 2n

2n − 1
= lim

n→∞ 1

1− 1/2n
=

1

1− 0
= 1 > 0

Therefore, by the Limit Comparison Test,
∑∞

n=1
1

2n−1 converges.

In general, comparison tests are most useful for series resembling geometric or p-series.
When choosing a p-series to compare the unknown series to, choose p such that the order
of your p series is the same as the order of the unknown series.

Example: What p-series should one compare the series
∑∞

n=1

√
n3+1

3n3+4n2+2
to?

Solution: We can determine the order of
√
n3+1

3n3+4n2+2
by looking at the highest-order terms
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in the numerator and denominator:
√
n3

n3
=

n3/2

n3
=

1

n3/2

So we should compare
∑∞

n=1

√
n3+1

3n3+4n2+2
to the convergent p-series

∑∞
n=1

1
n3/2 .

Example: Is
∑∞

n=1

√
n3+1

3n3+4n2+2
convergent or divergent?

Solution: We have already determine that we should compare this series to
∑∞

n=1
1

n3/2 .
To apply the limit test, we need to evaluate

lim
n→∞

√
n3+1

3n3+4n2+2
1

n3/2

= lim
n→∞ n3/2

√
n3 + 1

3n3 + 4n2 + 2

= lim
n→∞

√
n6 + n3

3n3 + 4n2 + 2
=

1

3
> 0

Therefore, by the Limit Comparison Test,
∑∞

n=1

√
n3+1

3n3+4n2+2
is convergent because the p-

series
∑∞

n=1
1

n3/2 is convergent.
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Exercise 4

.Use the Comparison Test or the Limit
Comparison Test to determine if the fol-
lowing series are convergent or divergent.

1.
∑∞

n=1
1√

n2+1

2.
∑∞

n=1
9n

3+10n

3.
∑∞

n=1
n sin2 n
1+n3

Answer on Page 22

Working Space

1.4 Ratio and Root Tests for Convergence

1.4.1 Absolute Convergence

Suppose there is a series
∑∞

n=1 an, then there is a corresponding series
∑∞

n=1 |an| = |a1|+
|a2| + |a3| + · · · . If

∑∞
n=1 |an| is convergent, then the series

∑∞
n=1 an is called absolutely

convergent.

Example: Consider the alternating series

∞∑
n=1

(−1)n−1

n2
= 1−

1

22
+

1

32
+ · · ·

Is this series absolutely convergent?
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Solution: We examine the corresponding series where we take the absolute value of each
term: ∞∑

n=1

∣∣∣∣(−1)n−1

n2

∣∣∣∣ = ∞∑
n=1

1

n2

We can identify
∑∞

n=1
1
n2 as a convergent p-series. Since

∑∞
n=1

1
n2 is convergent, we can

state that
∑∞

n=1
(−1)n−1

n2 is absolutely convergent.

Example Is the convergent series
∑∞

n=1
(−1)n−1

n absolutely convergent?

Solution We consider the sum of the absolute values of the terms:
∞∑
n=1

∣∣∣∣(−1)n−1

n

∣∣∣∣ = ∞∑
n=1

1

n

You should recognize this as the harmonic series, which is divergent. When a series is
convergent but the corresponding series of absolute values is not, we call it conditionally
convergent.

We won’t prove the theorem here, but it is useful to know that if a series
∑∞

n=1 an is abso-
lutely convergent, then it is convergent. You can prove this yourself using the Comparison
Test.

Exercise 5

.Is the series given by

cos 1
12

+
cos 2
22

+
cos 3
33

+ · · ·

convergent or divergent?

Answer on Page 23

Working Space
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Exercise 6

.Determine whether each of the follow-
ing series is absolutely or conditionally
convergent.

1.
∑∞

n=1
(−1)n

3n+2

2.
∑∞

n=1
sinn
4n

3.
∑∞

n=1(−1)n−1 2n
n2+4

Answer on Page 23

Working Space

1.4.2 The Ratio Test

The ratio test compares the (n + 1)th term of a series to the nth term and takes the limit
as n → ∞ of the absolute value of this ratio:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L

There are three possible outcomes of the ratio test:

1. if L < 1, then the series
∑∞

n=1 an is absolutely convergent (and therefore convergent).

2. if L = 1, then the ratio test is inconclusive and we cannot draw any conclusions
about whether

∑∞
n=1 an is convergent or divergent.

3. if L > 1 or limn→∞ an+1

an
= ∞, then the series

∑∞
n=1 an is divergent.
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Example: Apply the ratio test to determine if
∑∞

n=1(−1)n n3

3n is convergent or divergent.

Solution:

lim
n→∞

∣∣∣∣∣∣
(−1)n+1(n+1)3

3n+1

(−1)nn3

3n

∣∣∣∣∣∣ = lim
n→∞ (n+ 1)3

3n+1
· 3

n

n3

= lim
n→∞ (n+ 1)3

n3
· 3n

3 · 3n

= lim
n→∞

(
n+ 1

n

)
· 1
3
=

1

3
lim
n→∞

(
n+ 1

n

)
=

1

3
· 1 =

1

3

Since L < 1, the series
∑∞

n=1(−1)n n3

3n is absolutely convergent.

The ratio test is most useful for series that contain factorials, constants raised to the nth

power, or other products.

Exercise 7

.[This question was originally presented
as a multiple-choice, no-calculator prob-
lem on the 2012 AP Calculus BC exam.]
Which of the following series are conver-
gent?

1.
∑∞

n=1
8n

n!

2.
∑∞

n=1
n!

n100

3.
∑∞

n=1
n+1

(n)(n+2)(n+3)

Answer on Page 24

Working Space
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Exercise 8

.[This question was originally presented
as a multiple-choice, calculator-allowed
problem on the 2012 APCalculus BC exam.]If
the series Σ∞

n=1an converges and an > 0

for all n, which of the following state-
ments must be true? Explain.

1. limn→∞ ∣∣∣an+1

an

∣∣∣ = 0

2. |an| < 1 for all n

3.
∑∞

n=1 an = 0

4.
∑∞

n=1 nan diverges

5.
∑∞

n=1
an
n converges

Answer on Page 24

Working Space

1.4.3 Root Test

The root test examines the behavior of the nth root of an as n → ∞. Similar to the ratio
test, there are three possible outcomes:

1. If limn→∞ n
√
|an| = L < 1, then the series

∑∞
n=1 an is absolutely convergent, and

therefore convergent.

2. If limn→∞ n
√
|an| = L > 1 or limn→∞ n

√
|an| = ∞, then the series

∑∞
n=1 an is diver-

gent.

3. If limn→∞ n
√

|an| = L = 1, then the Root Test is inconclusive.

The root test is best when there is a term or terms raised to the nth power. Consider the
series

∑∞
n=1

(
2n+3
3n+2

)n:
Example: Is the series

∑∞
n=1

(
2n+3
3n+2

)n convergent or divergent?

Solution: Since an consists of terms raised to the nth power, we will apply the root test
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for convergence:

lim
n→∞ n

√∣∣∣∣(2n+ 3

3n+ 2

)n∣∣∣∣ = lim
n→∞ 2n+ 3

3n+ 2
=

2

3
< 1

Therefore, by the root test, the series
∑∞

n=1

(
2n+3
3n+2

)n is convergent.

Exercise 9

.Use the Root Test to determine whether
the following series are convergent or di-
vergent.

1.
∑∞

n=1

(
3n2+1
n2−4

)n
2.

∑∞
n=1

(−1)n

(lnn)n

3.
∑∞

n=1

(
1+ 1

n

)n2

Answer on Page 24

Working Space

1.5 Strategies for Testing Series

When testing series for convergence, we want to choose a test based on the form of the
series. While you may by tempted to try each test one-by-one until you find an answer,
this quickly becomes cumbersome and time-consuming. Additionally, if you plan to take
an AP Calculus exam, you need to be able to quickly choose an appropriate test as to
conserve the time you have available for the exam. Here are some tips:

1. Check if the series is a p-series (
∑∞

n=1
1
np ). If so, then if p > 1 the series converges.
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Otherwise, the series diverges.

2. If the series is not a p-series, check to see if you can write it as a geometric series
(
∑∞

n=1 ar
n−1 or

∑∞
n=1 ar

n). Recall that geometric series are convergent if |r| < 1 and
divergent otherwise.

3. If the series can’t be written as a p-series or geometric series, but has a similar form,
consider the comparison tests (the Direct Comparison Test and the Limit Compari-
son Test). When choosing a p-series to compare your series to, follow the guidelines
outlined in the Comparison Tests section above.

4. If you can see at a glance that limn→∞ an 6= 0, then apply the Test for Divergence
to show the series is divergent. REMEMBER: limn→∞ an 6= 0 implies the series∑∞

n=1 an is divergent, but limn→∞ an = 0 DOES NOT necessarily imply the series∑∞
n=1 an is convergent.

5. If the series is alternating (has (−1)n or (−1)n−1 in the term), the Alternating Series
test may provide an answer.

6. The Ratio Test is excellent for series with factorials, other products, or constants
to the nth power. Remember that the Ratio Test will be inconclusive for p-series,
rational functions of n, and algebraic functions of n.

7. If an is of the form (bn)
n, use the Root Test.

8. If an = f(n)where f(n) is continuous, positive, and decreasing and you can evaluate∫∞
1 f(x)dx, use the Integral Test.

You don’t need to treat this as a checklist, where you check for every condition. Rather,
you should use this as a guide to quickly determine the convergence test most likely to be
useful.
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Exercise 10

.Choose an appropriate test to determine
if the series is convergent of divergent.
Apply the test and classify the series as
convergent or divergent.

1.
∑∞

n=1
en

n2

2.
∑∞

n=1
3nn2

n!

3.
∑∞

n=2
1

n
√
lnn

4.
∑∞

n=1

(
n

n+1

)n2

5.
∑∞

n=1

(
n
√
2− 1

)n

Answer on Page 25
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Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 5)

1. The function 2x−3 is positive and decreasing for x ∈ [1,∞).
∫∞
1 2x−3 dx = limt→∞ ∫t

1 2x
−3 dx =

limt→∞ [−x−2
]t
x=1

= limt→∞(−t−2)−−(1)−2 = 0+1 = 1. Since the integral
∫∞
1 2x−3 dx

converges, the series
∑∞

n=1 2n
−3 is also convergent.

2. The function 5
3x+1 is positive and decreasing for x ∈ [1,∞).

∫∞
1

5
3x−1 dx = limt→∞ ∫t

1
5

3x−1 dx

Using u-substitution to evaluate the integral, we set u = 3x − 1 and find that
du = 3dx → dx = du

3 . Substituting,
∫t
1

5
3x−1 dx =

∫x=t
x=1

5
3
1
u du. Evaluating the in-

tegral,
∫x=t
x=1

5
3
1
u du = 5

3 lnu|x=t
x=1 = 5

3 ln 3x+ 1|t1. Substituting this back into the limit,∫∞
1

5
3x−1 dx = limt→∞ 5

3 ln 3x+ 1|t1 = limt→∞[ 53 ln 3t+ 1] − 5
3 ln 4 = ∞ − 5

3 ln 4 = ∞.
Therefore, the integral

∫∞
1

5
3x−1 dx is divergent and so is the series

∑∞
n=1

5
3n−1

3. The function x
3x2+1

is positive and decreasing for x ∈ [1,∞).
∫∞
1

x
3x2+1

dx = limt→∞ ∫t
1

x
3x2+1

dx.
Applying the substitution u = 3x2+1 and du

6 = x dx, we see that limt→∞ ∫t
1

x
3x2+1

dx =

limt→∞ ∫x=t
x=1

1
6u du = limt→∞ 1

6 lnu|x=t
x=1 = limt→∞ 1

6 ln 3x2 + 1|t1 = limt→∞ [ 16 ln 3t2 + 1
]
−

1
6 ln 4 = ∞. Therefore the integral

∫∞
1

x
3x2+1

dx is divergent and so is the series∑∞
n=1

n
3n2+1

.

Answer to Exercise 2 (on page 6)

1. If p ≤ 0, then limn→∞ 1
np 6= 0, and the series fails the Test for Divergence. Therefore,

a p-series is divergent if p ≤ 0.

2. If p > 0, then f(x) = 1
xp is continuous, positive, and decreasing on the interval

x ∈ [1,∞) and we can apply the integral test. So we want to know, when is
∫∞
1

1
xp dx

convergent? When p = 1,
∫∞
1

1
xp dx = ln x|x=∞

x=1 = limt→∞ ln t − ln 1 = ∞ and the
integral and p-series are both divergent.

3. What about when 0 < p < 1? Then the integral
∫∞
1

1
xp dx = limt→∞ ∫t

1 x
−p dx =

limt→∞ 1
1−px

1−p|x=t
x=1 = limt→∞ 1

1−p
1

xp−1 =
(

1
1−p

) [
limt→∞ ( 1

tp−1

)
− 1
]
. When 0 < p <

1, then 1 − p > 0 is positive and limt→∞ 1
tp−1 = limt→∞ t1−p = ∞ and the integral

diverges. Therefore, p-series are divergent for 0 < p < 1.
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4. When p > 1, then
∫∞
1

1
xp dx =

(
1

1−p

) [
limt→∞ ( 1

tp−1

)
− 1
]
. When p > 1, p−1 > 0 and

limt→∞ 1
tp−1 = 0. Therefore,

∫∞
1

1
xp dx converges to 1

p−1 when p > 1, and therefore
the p-series is convergent when p > 1.

Answer to Exercise 3 (on page 9)

1. s10 =
1
14

+ 1
24

+ · · ·+ 1
104

≈ 1.082037.

2. R10 ≤
∫∞
10

1
x4

dx = −1
3x3

|∞x=10 = limx→∞ −1
3x3

− −1
3·103 = 1

3000 = 0.000333. Therefore, the
error is less than 0.000333.

3. Given s10 ≈ 1.082037, we can say that 1.082037 +
∫∞
n+1

1
x4

dx ≤ s ≤ 1.082037 +∫∞
n

1
x4

dx. Using a calculator to evaluate each integral, we see that: 1.082037 +
0.000250 ≤ s ≤ 1.082037 + 0.000333 and therefore the sum is between 1.082287
and 1.082370.

4. Writing the actual value as a decimal, π4

90 ≈ 1.082323, which is in the estimate win-
dow from the previous part.

5. We are looking for an n such that
∫∞
n

1
x4

dx ≤ 0.00001. limx→∞ −1
3x3

− −1
3n3 = 1

3n3 ≤
0.00001. 100, 000 ≤ 3n3. 33, 333.33 ≤ n3. 32.183 ≤ n. Since n must be an integer,
n = 33 gives Rn ≤ 0.00001.

Answer to Exercise 4 (on page 13)

1. This is similar to
∑∞

n=1
1
n , which is divergent. Unfortunately, 1

n > 1√
n2+1

, so we can’t
use the direct comparison test. We will try the limit comparison test:

lim
n→∞

(
1√

n2+1
1
n

)
= lim

n→∞
(

1√
n2 + 1

· n
1

)
= lim

n→∞ n√
n2 + 1

= lim
n→∞ 1√

1+ 1/n2
=

1

1+ 0
= 1 > 0

Therefore, since
∑∞

n=1
1
n diverges, so does

∑∞
n=1

1√
n2+1

.

2. This series is similar to the convergent geometric series
∑∞

n=1

(
9
10

)n. Given that:(
9

10

)
=

9n

10n
<

9n

3+ 10n

Since 9n

3+10n <
(

9
10

)n and
∑∞

n=1

(
9
10

)n is convergent, by the direct comparison test,∑∞
n=1

9n

3+10n is also convergent.
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3. We can compare this to the convergent p-series
∑∞

n=1
1
n2 . Noting that sin2 n ≤ 1:

n sin2 n

1+ n3
<

n sin2 n

n3
≤ n

n3
=

1

n2

Because n sin2 n
1+n3 ≤ 1

n2 for all n ≥ 1 and
∑∞

n=1
1
n2 is convergent, we can state by the

direct comparison test that
∑∞

n=1
n sin2 n
1+n3 is also convergent.

Answer to Exercise 5 (on page 14)

We can write the series as
∑∞

n=1
cosn
n2 . Since n is real, we know that n2 > 0 and we

can say that
∑∞

n=1

∣∣ cosn
n2

∣∣ = ∑∞
n=1

| cosn|
n2 . Additionally, | cosn| ≤ 1 for all n, and there-

fore | cosn|
n2 ≤ 1

n2 . We know the series
∑∞

n=1
1
n2 is convergent. And since we have shown

that
∑∞

n=1
| cosn|
n2 ≤

∑∞
n=1

1
n2 , by the comparison test

∑∞
n=1

| cosn|
n2 is convergent. Therefore,∑∞

n=1
cosn
n2 is absolutely convergent and therefore convergent.

Answer to Exercise 6 (on page 15)

1. Conditionally Convergent.
∑∞

n=1

∣∣∣ (−1)n

3n+2

∣∣∣ = ∑∞
n=1

1
3n+2 Applying the integral test to

this sum:
∫∞
1

1
3x+2 dx = limt→∞ ∫t

1
1

3x+2 dx =
[
1
3 ln 3x+ 2

]t
x=1

= limt→∞ [ln 3x+ 2] −

ln 3(1) − 2 = ∞− 0 = ∞. Since
∫∞
1

1
3x+2 dx is divergent,

∑∞
n=1

1
3n+2 is divergent and∑∞

n=1
(−1)n

3n+2 is conditionally convergent.

2. Absolutely Convergent.
∑∞

n=1

∣∣ sinn
4n

∣∣ ≤
∑∞

n=1
1
4n . Applying the integral test to∑∞

n=1
1
4n :

∫∞
1

1
4x dx = limt→∞ −1

4x ln 4 |
t
x=1 = limt→∞ [ −1

4t ln 4

]
− −1

41 ln 4
= 0 + 1

4 ln 4 = 1
4 ln 4 .

Since
∫∞
1

1
4x dx is convergent, the series

∑∞
n=1

1
4n is also convergent. And since∑∞

n=1

∣∣ sinn
4n

∣∣ ≤ ∑∞
n=1

1
4n ,

∑∞
n=1

∣∣ sinn
4n

∣∣ is also convergent, which shows that
∑∞

n=1
sinn
4n

is absolutely convergent.

3. Conditionally Convergent. We are asking if the series
∑∞

n=1

∣∣∣(−1)n−1 2n
n2+4

∣∣∣ is con-

vergent.
∑∞

n=1

∣∣∣(−1)n−1 2n
n2+4

∣∣∣ = ∑∞
n=1

2n
n2+4

We will apply the Limit Comparison test

and compare this series to the known, divergent series
∑∞

n=1
1
n . limn→∞ 2n

n2+4
1
n

=

limn→∞ 2n2

n2+4
= 2 > 0. Therefore, by the Limit Comparison test,

∑∞
n=1

∣∣∣(−1)n−1 2n
n2+4

∣∣∣
is divergent AND

∑∞
n=1(−1)n−1 2n

n2+4
is conditionally convergent.
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Answer to Exercise 7 (on page 16)

Series 1 and 3 converge

1. We apply the ratio test: limn→∞
∣∣∣∣∣ 8n+1

(n+1)!
8n

n!

∣∣∣∣∣ = limn→∞ 8·8n
(n+1)(n!) ·

n!
8n = limn→∞ 8

n+1 = 0.

Therefore, the series converges.

2. We apply the ratio test: limn→∞
∣∣∣∣∣

(n+1)!

(n+1)100

n!

n100

∣∣∣∣∣ = limn→∞ (n+1)n!
(n+1)100

·n100

n! = limn→∞ ( n
n+1

)100·
(n+ 1) = limn→∞ n100

(n+1)99
= ∞. Therefore, the series diverges.

3. We apply the comparison test: n+1
(n)(n+2)(n+3) =

n
(n)(n+2)(n+3)+

1
(n)(n+2)(n+3) =

1
(n+2)(n+3)+

1
(n)(n+2)(n+3) =

1
n2+5n+6

+ 1
n3+5n2+6n

≤ 1
n2 + 1

n3 . The series
∑∞

n=1
1
n2 and

∑∞
n=1

1
n3 are

both convergent, because they are p-series with p > 1. Having established that∑∞
n=1

n+1
(n)(n+2)(n+3) ≤

∑∞
n=1

1
n2 +

1
n3 and that

∑∞
n=1

1
n2 +

1
n3 converges, by the compar-

ison test we can state that
∑∞

n=1
n+1

(n)(n+2)(n+3) converges.

Answer to Exercise 8 (on page 17)

1. This is not necessarily true. For a convergent series, the result of the ratio test is
L < 1, so the limit could be 6= 0.

2. This is not necessarily true. Consider the geometric series
∑∞

n=1 2(
1
2)

n−1. This series
is convergent because the common ratio is less than one, but the first term is 2( 12)

0 =
2 > 1.

3. This is not necessarily true. Again, consider the geometric series
∑∞

n=1 2(
1
2)

n−1,
which converges to 4 6= 0.

4. This is not necessarily true. Consider the p-series
∑∞

n=1
1
n4 . Then the series

∑∞
n=1 n

1
n4 =∑∞

n=1
1
n3 is convergent.

5. This must be true. By the comparison test,
∑∞

n=1
an
n ≤

∑∞
n=1 an. Since

∑∞
n=1 an

converges, so much
∑∞

n=1 nan.

Answer to Exercise 9 (on page 18)

1. lim∞
n=1

n

√∣∣∣( 3n2+1
n2−4

)n∣∣∣ = lim∞
n=1

3n2+1
n2−4

= 3 > 1. Therefore, the series
∑∞

n=1

(
3n2+1
n2−4

)n
is
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divergent.

2. limn→∞ n

√∣∣∣ (−1)n

(lnn)n

∣∣∣ = limn→∞ n

√
1

(lnn)n = limn→∞ 1
lnn = 1∞ = 0 < 1. Therefore, the

series
∑∞

n=1
(−1)n

(lnn)n is convergent.

3. limn→∞ n

√∣∣∣(1+ 1
n

)n2
∣∣∣ = limn→∞ (1+ 1

n

)n
= e > 1. Therefore,

∑∞
n=1

(
1+ 1

n

)n2

is
divergent.

Answer to Exercise 10 (on page 20)

1. Divergent. Since there is a constant to the nth power and an algebraic function of
n, we will try the Ratio Test. limn→∞ ∣∣∣an+1

an

∣∣∣ = limn→∞ en+1

(n+1)2
· n2

en = limn→∞ en·e
en ·(

n
n+1

)2
= limn→∞ e ·

(
n

n+1

)2
= e · 12 = e > 1. Therefore,

∑∞
n=1

en

n2 is divergent.

2. Convergent. Since there is a factorial, we will try the Ratio Test. limn→∞ ∣∣∣an+1

an

∣∣∣ =
limn→∞ 3n+1(n+1)2

(n+1)! · n!
3nn2 = limn→∞ 3·3n

3n · n!
(n+1)n! ·

(
n+1
n

)2
= limn→∞ 3(n+1)2

(n+1)n2 = limn→∞ 3(n+1)
n2 =

0 < 1. Therefore, the series
∑∞

n=1
3nn2

n! is convergent.

3. Divergent. Since
∫∞
2

1

x
√
ln x

dx can be integrated, we will apply the integral test.∫∞
2

1

x
√
ln x

dx = limt→∞ ∫t
2

1

x
√
ln x

dx. Setting u = ln x, then du = dx
x and 1

x
√
ln x

dx =
1√
u
du. Thenwe can say that

∫∞
2

1

x
√
ln x

dx = limt→∞ ∫x=t
x=2

1√
u
du = limt→∞ (−1

2

)√
u|x=t

x=2 =

limt→∞ (−1
2

)√
ln x

t

2 =
(
−1
2

)
limt→∞√

ln t −
(
−1
2

)√
ln 2 = ∞. Since the integral di-

verges, so does the series.

4. Convergent. Since this series has terms to the nth power, we will try the Root Test.

limn→∞ n

√∣∣∣( n
n+1

)n2
∣∣∣ = limn→∞ n

√(
n

n+1

)n+2
= limn→∞ ( n

n+1

)n2

n = limn→∞ ( n
n+1

)n
=

limn→∞
(

1

1+ 1
n

)n

= 1

limn→∞(
1+ 1

n

)n = 1
e < 1 Therefore, by the root test, the series is

convergent.

5. Convergent. This series also has terms raised to the nth power, we will try the Root

Test again. limn→∞ n

√∣∣∣( n
√
2− 1

)n∣∣∣ = limn→∞ n

√(
n
√
2− 1

)n
= limn→∞ ( n

√
2− 1

)n/n
=

limn→∞ ( n
√
2− 1

)
= limn→∞ 21/n − 1 = 1 − 1 = 0 < 1. Therefore, the series con-

verges.
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Index

absolute convergence, 13

comparison tests for series, 9
conditionally convergent, 14

Direct Comparison Test, 10

Integral Test, 1
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remainder estimate for series, 6
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Test for Divergence, 1
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