
Chapter 1

Series

When writing a number with an infinite decimal, such as the Golden Ratio (also known
as the Golden Number):

φ = 1.618033988 · · ·

The decimal system means we can re-write the Golden Ratio (or any irrational number)
as an infinite sum:

φ = 1+
6

10
+

1

102
+

8

103
+

0

104
+

3

105
+ · · ·

You might recall from the chapter on Riemann Sums that we can represent the addition
of many (or infinite) with big sigma notation:

n∑
i=1

ai

Where i is the index as discussed in Sequences and n is the number of terms. For infinite
sums, n = ∞.

1.1 Partial Sums

Let us quickly define a partial sum. A partial sum is where we only look at the first n
terms of a series. For the general series,

∑n
i=1 ai, the partial sums are:

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

· · ·

sn = a1 + a2 + · · ·+ an =

n∑
i=1

ai

Example: A series is given by
∑∞

i=1(
−3
4 )i. What is the value of the partial sum s4?

Solution: s4 is the sum of the first 4 terms:

(
−3

4
)1 + (

−3

4
)2 + (

−3

4
)3 + (

−3

4
)4

=
−3

4
+

9

16
+

−27

64
+

81

256
=

−75

256

1
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1.2 Reindexing

Sometimes it is necessary to re-index series. This means changing what n the series starts
at . In general, ∞∑

n=i

an =

∞∑
n=i+1

an−1 and
∞∑
n=i

an =

∞∑
n=i−1

an+1

That is, to increase the index by 1, you need to replace n with (n − 1) and do decrease
the index by 1, you need to replace n with (n + 1). Let’s visualize why this is true (see
figure 1.1). Notice that for each series, the terms are the same. This is similar to shifting
functions: to move the function to the left on the x-axis, you plot f(x+ 1), and to move it
to the right, f(x− 1).
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n∑∞
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Figure 1.1:
∑∞

n=0
1

n+1 =
∑∞

n=1 an =
∑∞

n=2 = 1+ 1
2 +

1
3 + · · ·

We can also prove each reindexing rule mathematically. Recall that

∞∑
n=1

an = a1 + a2 + a3 + · · ·

We also know that
∞∑
n=2

an−1 = a2−1 + a3−1 + a4−1 + · · · = a1 + a2 + a3 + · · ·

Therefore,
∑∞

n=1 an =
∑∞

n=2 an−1.

Similarly,

∞∑
n=0

an+1 = a0+1 + a1+1 + a2+1 + · · · = a1 + a2 + a3 + · · · =
∞∑
n=1

an
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Example: Reindex the series
∑∞

n=3
n+1
n2−2

to begin with n = 1.

Solution: We are decreasing the index, so we will use
∑∞

n=i−1 an+1 =
∑∞

n=i an. We will
apply this rule twice, to decrease the index from 3 to 1:

∞∑
n=2

(n+ 1) + 1

(n+ 1)2 − 2
=

∞∑
n=2

n+ 2

(n+ 1)2 − 2

∞∑
n=1

(n+ 1) + 2

[(n+ 1) + 1]2 − 2
=

∞∑
n=1

n+ 3

(n+ 2)2 − 2

It is easier and faster to be able to reindex a series by more than one step at a time. Using
the example above, we can write an even more general rule for reindexing:

∞∑
n=i

an =

∞∑
n=i+j

an−j

where i and j are integers. (Then to decrease the index, you would choose a j such that
j < 0.)

1.3 Convergent and Divergent Series

Just like sequences, series can also be convergent or divergent. Consider the series
∑∞

i=1 i.
Given what you already know about the meaning of ”convergent” and ”divergent”, guess
whether

∑∞
i=1 i is convergent or divergent.

Let’s determine the first few partial sums of the series (shown graphically in figure 1.2):

n Terms Partial Sum
1 1 1
2 1+2 3
3 1+2+3 6
4 1+2+3+4 10

As you can see, as n increases, the value of the partial sum increases without approaching
a particular value. We can also see that the value of the first n terms summed together is
n(n+1)

2 . This means that as n approaches ∞, the sum also approaches ∞ and the series is
divergent.

Obviously, for a series to not become huge, the values of the terms should decrease as i

increases (that is, each subsequent term is smaller than the one before it). Take the series∑∞
i=1

1
2i
. As i increases, 1

2i
decreases. Let’s look at the first few partial sums of this series

(shown graphically in figure 1.3):
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Figure 1.2: For the divergent series
∑n

i=1 i, the value of the partial sum increases to infinity
as n increases

n Terms Partial Sum
1 1

2
1
2

2 1
2 +

1
4

3
4

3 1
2 +

1
4 +

1
8

7
8

4 1
2 +

1
4 +

1
8 +

1
16

15
16
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1
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Figure 1.3: For the convergent series
∑n

i=1
1
2i
, the value of the partial sum approaches 1

as n increases

Do you see the pattern? The nth partial sum is equal to 2n−1
2n = 1− 1

2n . And as n approaches∞, the partial sum approaches 1. The series
∑∞

i=1
1
2i

is convergent.
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Let us define the sequence {sn} where sn is the nth partial sum of a series:

sn =

n∑
i=1

ai

.

If the sequence {sn} is convergent and limn→∞ sn exists, then the series
∑∞

i=1 ai is also
convergent. And if the sequence {sn} is divergent, then the series

∑∞
i=1 ai is also divergent.

Example: is the harmonic series,
∑∞

n=1
1
n convergent or divergent?

Solution: You may think that the series is convergent, since limn→∞ 1
n = 0. Let’s see if we

can confirm this. We begin by looking at the partial sums s2, s4, s8, and s16:

s2 = 1+
1

2

s4 = 1+
1

2
+

(
1

3
+

1

4

)
> 1+

1

2
+

(
1

4
+

1

4

)
= 1+

2

2

s8 = 1+
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
> 1+

1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
= 1+

3

2

s16 = 1+
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+

(
1

9
+ · · ·+ 1

16

)
>

1+
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+

(
1

16
+ · · ·+ 1

16

)
= 1+

4

2

Notice that, in general, s2n > 1 + n
2 for n > 1. Taking the limit as n → ∞, we see that

limn→∞ s2n > limn→∞ 1+ n
2 = ∞. Therefore, s2n also approaches ∞ as n gets larger and

the harmonic series
∑∞

n=1
1
n is divergent.

This example shows a very important point: a series whose terms decrease to zero as n
gets large is not necessarily convergent. What we can say, though, is that if the limit as n
approaches infinity of the terms of a series does not exist or is not zero, then the series
is divergent (i.e. not convergent). This is called the Test for Divergence, and we will
explore it further in the next chapter.

1.3.1 Properties of Convergent Series

We just saw that if limn→∞ an 6= 0 then the series
∑∞

n=1 an diverges. The contrapositive
statement gives a property of convergent series:

If the series
∞∑
n=1

an is convergent, then lim
n→∞ = 0



6 Chapter 1. SERIES

If a series is made of other convergent series, it may be convergent. Recall, if a series is
convergent, this means the limn→∞∑n

i=1 ai = L. By the properties of limits, then we can
also say that the series multiplied by a constant is convergent:

∞∑
n=1

can = c · L = c

∞∑
n=1

an

Suppose there is another convergent series such that limn→∞∑n
i=1 bi = M. Then the sum

of those series is also convergent. That is:
∞∑
n=1

(an + bn) = L+M =

∞∑
n=1

an +

∞∑
n=1

bn

Similarly, the difference of the series is convergent:
∞∑
n=1

(an − bn) = L−M =

∞∑
n=1

an −

∞∑
n=1

bn

1.4 Geometric Series

A geometric series is the sum of a geometric sequence, and has the form:
∞∑
n=1

arn or
∞∑
n=1

arn−1

Where a is some constant and r is the common ratio. For
∑∞

n=1 ar
n−1, a is also the first

term.

Example: Write the series 1+ 1
2 +

1
4 +

1
8 + · · · in sigma notation.

Solution: We see that the first term is a = 1 and the common ratio is 1
2 , so we can write

the series: ∞∑
n=1

1(
1

2
)n−1 =

∞∑
n=1

(
1

2
)n−1

When are geometric series convergent? First, let’s consider the case where r = 1. If this is
true, then sn = a+a+a+ · · ·+a = na. As n approaches ∞, the sum will approach ±∞
(depending on whether a is positive or negative), and the series is divergent.

When r 6= 1, we can write sn and rsn:

sn = a+ ar+ ar2 + · · ·+ arn−1

rsn = ar+ ar2 + ar3 + · · ·+ arn
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2 4 6 8 10

r > 1

r = 1

0 < r < 1

n

Figure 1.4: Geometric sequences are divergent if r ≥ 1

Subtracting rsn from sn, we get:

sn − rsn = (a+ ar+ ar2 + · · ·+ arn−1) − (ar+ ar2 + ar3 + · · ·+ arn−1 + arn)

= a− arn

Solving for sn, we find:

sn =
a(1− rn)

1− r

We take the limit as n → ∞ to determine for what values of r the series converges:

lim
n→∞ sn = lim

n→∞ a(1− rn)

1− r

= lim
n→∞

[
a

1− r
−

arn

1− r

]
=

a

1− r
−

(
a

1− r

)
lim
n→∞ rn

This begs the question: when is limn→∞ rn convergent? From the sequences chapter, we
know this limit converges if |r| < 1 (that is, −1 < r < 1). If this is true, then limn→∞ rn = 0

and
lim
n→∞ sn =

a

1− r

(see figures 1.4 and 1.5 for a visual)

Example: Find the sum of the geometric series given by 2− 2
3 +

2
9 −

2
27 + · · · .

Solution: The first term is a = 2 and each the common ratio is r = −1
3 . Since |r| < 1, we

know that the series converges. We can calculate the value of the sum using the geometric
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2 4 6 8 10

r > 1

r = −1

−1 < r < 0

n

Figure 1.5: Geometric sequences are divergent if r ≤ 1. Notice that for r = −1, the partial
sums alternate between the initial term and zero.

series formula: ∞∑
i=1

a(r)i−1 =
a

1− r

∞∑
i=1

2(
−1

3
)i−1 =

2

1− −1
3

=
2
4
3

=
6

4
= 1.5

We can confirm this graphically (see figure 1.6). You can also write out the first several
partial sequences: you should find the sums approach 1.5 as n increases.

2 4 6 8

−1

1

2

n

sn
an

Figure 1.6: the nth term and partial sums of
∑n

i=1 2(
−1
3 )i−1

Example: What is the value of
∑∞

n=1 2
2n51−n

Solution: The key here is to re-write the series in the form
∑∞

n=1 ar
n−1 so we can use the
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fact that convergent geometric series sum to a
1−r .

∞∑
n=1

22n51−n =

∞∑
n=1

(
22
)n

(
1

5

)n−1

=

∞∑
n=1

4 · (4)n−1

(
1

5

)n−1

=

∞∑
n=1

4 ·
(
4

5

)n−1

Which is in the form
∑∞

n=1 ar
n−1 with a = 4 and r = 4

5 . Since |r| < 1, the series converges
to

a

1− r
=

4

1− 4
5

=
4
1
5

= 20

Exercise 1

.Determine whether the geometric series
is convergent or divergent. If it conver-
gent, find its sum.

1. 3− 4+ 16
3 − 64

9 + · · ·

2. 2+ 0.5+ 0.125+ 0.03125+ · · ·

3.
∑∞

n=1
(−3)n−1

4n

4.
∑∞

n=1
e2n

6n−1

Answer on Page 15

Working Space

Exercise 2

.Find a value of c such that
∑∞

n=0(1 +
c)−n = 5

3

Answer on Page 15

Working Space
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Exercise 3

.For what values of p does the series
∑∞

n=1

(
p
2

)n
converge?

Answer on Page 15

Working Space

1.5 p-series

A p-series takes the form
∑∞

n=1
1
np and converges if p > 1 and diverges if p ≤ 1. We won’t

prove this here, since it requires the application of a test you will learn about in the next
chapter.

Example Write the series 1+ 1
3√
2
+ 1

3√
3
+ 1

3√
4
+ · · · . Is it convergent or divergent?

Solution: We see that an = 1
3
√
n

and so the infinite series is

∞∑
n=1

1
3
√
n

We see that this is a p-series with p = 1
3 . Since p < 1, the series is divergent.
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Exercise 4

.Euler found that the exact sum of the p-
series where p = 2 is:

∞∑
n=1

1

n2
=

π2

6

And that the exact sum of the p-series
where p = 4 is:

∞∑
n=1

1

n4
=

π4

90

Use this and the properties of conver-
gent series to find the sum of each of the
following series:

1.
∑∞

n=1
n2+1
n4

2.
∑∞

n=2
1
n2

3.
∑∞

n=3
1

(n+1)2

4.
∑∞

n=1

(
3
n

)4
5.

∑∞
n=1

(
4
n2 + 3

n4

)

Answer on Page 16

Working Space
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Exercise 5

.For what values of k does the series
∑∞

n=1
1

n2k

converge?

Answer on Page 16

Working Space

1.6 Alternating Series

An alternating series is one in which the terms alternate between positive and negative .
Here is an example:

−
1

2
+

2

3
−

3

4
+

4

5
−

5

6
+ · · · =

∞∑
n=1

(−1)n
n

n+ 1

Alternating series are generally of the form

an = (−1)nbn or an = (−1)n−1bn

Where bn is positive (and therefore, |an| = bn).

An alternating series is convergent if (i)bn+1 ≤ bn and (ii)limn→∞ bn = 0. In words, we
say that if the absolute value of the terms of a series decrease towards zero, then the series
converges. This is called the Alternating Series Test.

0 s2 s4 s6 s s5 s3 s1

b1

−b2

+b3

−b4

+b5

−b6

Figure 1.7: As n increases, sn approaches s

Example: Is the alternating harmonic series
∑∞

n=1
(−1)n−1

n convergent?

Solution: The Alternating series test states that an alternating series is convergent if
|an+1| < |an|: ∣∣∣∣(−1)n−1+1

n+ 1

∣∣∣∣ < ∣∣∣∣(−1)n−1

n

∣∣∣∣
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1

n+ 1
<

1

n

Since |an+1| < |an| and the series is alternating,
∑∞

n=1
(−1)n−1

n is convergent.

Exercise 6

.Test the following alternating series for
convergence:

1.
∑∞

n=1
(−1)n3n
4n−1

2.
∑∞

n=1(−1)n+1 n2

n3+1

3.
∑∞

n=1(−1)n−1e2/n

Answer on Page 16

Working Space

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.

https://kontinua.org/
https://kontinua.org/




Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 9)

1. We need to identify a and r. If we use the form
∑∞

n=1 ar
n−1, then a = 3. To

find the common ratio, we can evaluate an+1

an
= −4

3 . Then we can write the series as∑∞
n=1 3

(
−4
3

)n−1. In this case, r = −4
3 and |r| ≥ 1, and therefore the series is divergent.

2. Following the process outlined above, we see that a = 2 and r = 1
4 . Therefore the

series is
∑∞

n=1 2
(
1
4

)n−1. Since |r| < 1, the series converges to a
1−r =

2
1−1/4

= 2·4
3 = 8

3

3. We need to rewrite the series into a standard from in order to identify a and r:∞∑
n=1

(−3)n−1

4n
=

∞∑
n=1

(−3)n−1

4(4)n−1
=

∞∑
n=1

1

4

(
−3

4

)n−1

So r = −3
4 and |r| < 1. Therefore, the series converges to 1/4

1−(−3/4) =
1
4 ·

4
7 = 1

7

4. We need to rewrite the series into a standard from in order to identify a and r:
∞∑
n=1

e2n

6n−1
=

∞∑
n=1

(e2)n

6n−1
=

∞∑
n=1

(e2)(e2)n−1

6n−1
=

∞∑
n=1

e2
(
e2

6

)n−1

Therefore, r = e2

6 ≈ 1.232. Since |r| > 1, the series diverges.

Answer to Exercise 2 (on page 9)

We want to rewrite this as a geometric series of the form
∑∞

n=i ar
n−1 so we can use the

fact that the sum of a convergent geometric series is a
1−r .

∑∞
n=0(1+ c)−n =

∑∞
n=0

(
1

1+c

)n
=∑∞

n=1

(
1

1+c

)n−1. This is a geometric series with a = 1 and r = 1
1+c . So the value of the

series is 1

1− 1
1+c

= 1
c

c+1
= c+1

c . Setting this equal to 5
3 and solving for c, we find that c = 3

2 .

Answer to Exercise 3 (on page 10)

−2 < p < 2 Let’s re-write this geometric series into standard form:
∑∞

n=1

(
p
2

)n
=

∑∞
n=1

p
2

(
p
2

)n
which means a = p

2 and r = p
2 . We know that geometric series converge if |r| < 1, so we

15
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set up an inequality and solve for p: ∣∣∣p
2

∣∣∣ < 1

−1 <
p

2
< 1

−2 < p < 2

Answer to Exercise 4 (on page 11)

1. Separating the terms, we see that
∑∞

n=1
n2+1
n4 =

∑∞
n=1

(
n2

n4 + 1
n4

)
=

∑∞
n=1

1
n2 +∑∞

n=1
1
n4 = π2

6 + π4

90

2. Notice that this series starts at n = 2. By the properties of series, we know that∑∞
n=1 an = a1 +

∑∞
n=2 an. Therefore,

∑∞
n=2

1
n2 =

∑∞
n=1

(
1
n2

)
− 1

12
= π2

6 − 1

3. We can begin by reindexing this series:
∑∞

n=3
1

(n+1)2
=

∑∞
n=4

1
n2 . Similar to the

previous problem, we also know that
∑∞

n=4
1
n2 =

∑∞
n=1

(
1
n2

)
−

(
1
12

+ 1
22

+ 1
32

)
=

π2

6 − 49
36

4. We can re-write this series as
∑∞

n=1

(
3
n

)4
=

∑∞
n=1(3

4) 1
n4 = 81

∑∞
n=1

1
n4 = 81π4

90 = 9π4

10

5. We can re-write the series as
∑∞

n=1

(
4
n2 + 3

n4

)
=

∑∞
n=1

4
n2 +

∑∞
n=1

3
n4 = 4

∑∞
n=1

1
n2 +

3
∑∞

n=1
1
n4 = 4π2

6 + 3π4

90 = 2π2

3 + π4

30

Answer to Exercise 5 (on page 12)

This is a p-series where p = 2k. We know that p-series converge for p > 1: 2k > 1 → k > 1
2 .

Answer to Exercise 6 (on page 13)

1. The series is convergent if
∣∣∣ (−1)n+13(n+1)

4(n+1)−1

∣∣∣ < ∣∣∣ (−1)n3n
4n−1

∣∣∣ if 3n+3
4n+4−1 < 3n

4n−1 and if 3n+3
4n+3 <

3n
4n−1 if (3n+ 3)(4n− 1) < (3n)(4n+ 3) if 12n2 + 12n− 3n− 3 < 12n2 + 9n if −3 < 0

which is true. Therefore,
∑∞

n=1
(−1)n3n
4n−1 is convergent.

2. The series is convergent if
∣∣∣(−1)n+1+1 (n+1)2

(n+1)3+1

∣∣∣ <
∣∣∣(−1)n+1 n2

n3+1

∣∣∣ which is true if
(n+1)2

(n+1)3+1
< n2

n3+1
if (n + 1)2(n3 + 1) < (n2)((n + 1)3 + 1) if (n2 + 2n + 1)(n3) <
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(n2)(n3 + 3n2 + 3n+ 1+ 1) if n5 + 2n4 +n3 < n5 + 3n4 + 3n3 + 2n2 which is true for
all n ≥ 1. Therefore,

∑∞
n=1(−1)n+1 n2

n3+1
is convergent.

3. The series is convergent if
∣∣(−1)n−1+1e2/(n+1)

∣∣ < ∣∣(−1)n−1e2/n
∣∣which is true if e2/(n+1) <

e2/n which is true if 2
n+1 < 2

n which is true for all n ≥ 1. Therefore,
∑∞

n=1(−1)n−1e2/n

is convergent.
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