
Chapter 1

Sequences in Calculus

We have introduced sequences in a previous chapter. Now, we will examine them in
more detail in a calculus context. You already know about arithmetic and geometric
sequences, but not all sequences can be classified as arithmetic or geometric. Take the
famous Fibonacci sequence, {1, 1, 2, 3, 5, 8, ...}, which can be explicitly defined as an =
an−1 + an−2, with a1 = a2 = 1. There is no common difference or common ratio, so the
Fibonacci sequence is not arithmetic or geometric. Another example is an = sin nπ

6 , which
will cycle through a set of values.

Sequences have many real-world applications, including compound interest and modeling
population growth. In later chapters, you will learn that the sum of all the values in a
sequence is a series and how to use series to describe functions. In order to be able to do
all that, first we need to talk in-depth about sequences.

Some sequences are defined explicitly, like an = sin nπ
6 , while others are defined recur-

sively, like an = an−1 + an−2.

Example: Write the first 5 terms for the explicitly defined sequence an = n
n+1 .

Solution: We can construct a table to keep track of our work:

n work an

1 1
1+1

1
2

2 2
2+1

2
3

3 3
3+1

3
4

4 4
4+1

4
5

5 5
5+1

5
6

So the first five terms are { 12 ,
2
3 ,

3
4 ,

4
5 ,

5
6}.
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Exercise 1

.Write the first 5 terms for each sequence.

1. an = 2n

2n+1

2. an = cos nπ
2

3. a1 = 1, an+1 = 5an − 3

4. a1 = 6, an+1 =
an
n+1

Answer on Page 13

Working Space

1.1 Convergence and Divergence

You can visualize a sequence on an xy-plane or a number line. Figures 1.1 and 1.2 show
visualizations of the sequence an = n

n+1 . To visualize this on the xy-plane, we take points
such that x = n and y = an, where n is a positive integer. What do you notice about this
sequence? As n increases, an gets closer and closer to 1.

1
4

1
2

3
4

1

a1 a2 a3 a4 a∞

Figure 1.1: an = n
n+1 on a number line

Because an approaches a specific number as n → ∞, we call the series an = n
n+1 convergent.

We prove a sequence is convergent by taking the limit as n approaches ∞. If the limit
exists and approaches a specific number, the sequence is convergent. If the limit does not
exist or approaches ±∞, the sequence is divergent.

We can see graphically that limn→∞ n
n+1 = 1, so that sequence is convergent. What about

bn = n√
10+n

? Is bn convergent or divergent?

lim
n→∞ n√

10+ n
= lim

n→∞ n/n√
10
n2 + n

n2

= lim
n→∞ 1√

10
n2 + 1

n

= ∞
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Figure 1.2: an = n
n+1 on an xy-plane

Therefore, the sequence bn = n√
10+n

is divergent.

Here is another example of a divergent sequence: cn = sin nπ
2 . The graph is shown

in figure 1.3. As you can see, the value of cn oscillates between 1, 0, and -1 without
approaching a specific number. This means that cn does not approach a particular number
as n → ∞ and the sequence is divergent.
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Figure 1.3: cn = sin nπ
2 on an xy-plane
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Exercise 2

.Classify each sequence as convergent or
divergent. If the sequence is convergent,
find the limit as n → ∞.

1. an = 3+5n2

n+n2

2. an = n4

n3−2n

3. an = 2+ (0.86)n

4. an = cos nπ
n+1

5. an = sinn

Answer on Page 13

Working Space

1.2 Evaluating limits of sequences

Recall that a sequence can be considered a function where the domain is restricted to
positive integers. If there is some f(x) such that an = f(n) when n is an integer, then
limn→∞ an = limx→∞ f(x) (see figure 1.4). This means that all the rules that apply to the
limits of functions also apply to the limits of sequences, including the Squeeze Theorem
and l’Hospital’s rule.

Example: What is limn→∞ lnn
n ?

Solution: First, we will try to compute the limit directly:

lim
n→∞ lnn

n
=

limn→∞ lnn

limn→∞ n
=

∞∞
This is undefined, but fits the criteria for l’Hospital’s rule:

lim
n→∞ lnn

n
= lim

n→∞
d
dn lnn

d
dnn

= lim
n→∞

1
n

1
= 0
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Figure 1.4: The limit of the function is the same as the limit of the sequence

Example: is the sequence an = n!
nn convergent or divergent?

Solution: First trying to take the limit directly, we see that:

lim
n→∞ n!

nn
=

∞∞
which is undefined. Because the factorial cannot be described as a continuous function,
we can’t use l’Hospital’s rule. We can examine this sequence graphically (see figure 1.5)
and mathematically. We examine it mathematically by writing out a few terms to get an
idea of what happens to an as n gets large:

a1 =
1!

11
= 1

a2 =
2!

22
=

1 · 2
2 · 2

a3 =
3!

33
=

1 · 2 · 3
3 · 3 · 3

· · ·

an =
n!

nn
=

1 · 2 · 3 · · · · n
n · n · n · · ·n

From examining the graph in figure 1.5, we can guess that limn→∞ an = 0. Let’s prove
that mathematically. We can rewrite our expression for an as n gets large:

an =
n!

nn
=

1 · 2 · 3 · · · · n
n · n · n · · ·n

=
1

n
(
2 · 3 · · ·n
n · n · · ·n

)
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Figure 1.5: an = n!
nn

The expression inside the parentheses is less than 1, therefore 0 < an < 1
n . Since

limn→∞0 = 0 and limn→∞ 1
n = 0, by Squeeze Theorem we know that limn→∞ n!

nn = 0.
Therefore, the sequence an = n!

nn is convergent.

[[FIXME intro]] If limn→∞ an = L and the function f is continuous at L, then limn→∞ f(an) =
f(L). For example, what is limn→∞ sin π

n? Well, we know that limn→∞ π
n = 0 and that the

sine function is continuous at 0. Therefore, limn→∞ sin π
n = sin limn→∞ π

n = sin 0 = 0.

1.3 Monotonic and Bounded sequences

Just like functions, sequences can be increasing or decreasing. A sequence is increasing
if an < an+1 for n ≥ 1. Similarly, a sequence is decreasing if an > an+1 for n ≥ 1. If a
sequence is strictly increasing or decreasing, it is called monotonic.

The sequence an = 1
n+6 is decreasing. We prove this formally by comparing an to an+1:

1

n+ 6
>

1

(n+ 1) + 6
=

1

n+ 7

Example: Is the sequence an = n
n2+1

increasing or decreasing?

Solution: First, we find an expression for an+1:

an+1 =
n+ 1

(n+ 1)2 + 1
=

n+ 1

n2 + 2n+ 2

Since the degree of n is greater in the denominator, we have a guess that the sequence is
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Figure 1.6: The sequence an = sin nπ
6 is bounded and divergent

decreasing. To prove this, we check if an > an+1 is true:

n

n2 + 1
>

n+ 1

n2 + 2n+ 2

We can cross-multiply, because n > 0 and the denominators are positive:

(n)(n2 + 2n+ 2) > (n+ 1)(n2 + 1)

n3 + 2n2 + 2n > n3 + n2 + n+ 1

Subtracting (n3 + n2 + n) from both sides we see that:

n2 + n > 1

Which is true for all n ≥ 1. Therefore, an > an+1 for all n ≥ 1 and the sequence is
decreasing.

A sequence is bounded above if there is some number M such that an ≤ M for all n ≥ 1.
And a sequence is bounded below if there is some other number m such that an ≥ m for
all n ≥ 1. If a sequence is bounded above and below, then it is a bounded sequence.

Not all bounded sequences are convergent. Take our earlier example of an = sin nπ
6 . This

sequence is bounded, since we can say that −1 ≤ an ≤ 1 for all n. However, an = sin nπ
6

is divergent because limn→∞ sin nπ
6 does not exist (see figure 1.6). Additionally, not all

monotonic sequences are convergent. Consider bn = 2n (shown in figure 1.7). This is
monotonically increasing (that is, bn > bn−1 for all n), but limn→∞ 2n = ∞ and the
sequence is divergent.

A sequence must be convergent if it is both monotonic and bounded. Why is this? Recall
that to be bounded, then a sequence is bounded above and below, which means there is
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Figure 1.7: The sequence bn = 2n is bounded below, monotonically increasing, and diver-
gent

some m and some M such that m ≤ an ≤ M for all n. If the sequence is increasing, the
terms must get close to but not exceed M. Likewise, if the sequence is decreasing, the
terms must get close to, but not be less than m.

Example: is the sequence given by an = 4 and an+1 = 1
2(an + 7) bounded above, below,

both, or neither?

Solution: We start by calculating the first several terms:

Term Work Value
a1 a1 = 4 4
a2 = 1

2(4+ 7) 5.5
a3 = 1

2(5.5+ 7) 6.25
a4 = 1

2(6.25+ 7) 6.625
a5 = 1

2(6.625+ 7) 6.8125
a6 = 1

2(6.8125+ 7) 6.90625
a7 = 1

2(6.90625+ 7) 6.953125
a8 = 1

2(6.953125+ 7) 6.9765625

The sequence is increasing, so it is bounded below by the initial term, a1 = 4, and we
can state that an ≥ 4. Examining the computed terms, we see that an → 7 as n grows
larger. We can guess that this sequence is bounded above, with an ≤ 7. We can prove this
by induction. Suppose that there is some k such that ak < 7 (which is true for a1, etc.).
Then,

ak < 7

ak + 7 < 14

1

2
(ak + 7) <

1

2
(14)
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ak+1 < 7

Therefore, an < 7 for all n and the sequence is bounded above. Because the sequence
is monotonic and bounded, we know the sequence is convergent and, therefore, that the
limit of an as n → ∞ exists.

1.4 Applications of Sequences

1.4.1 Compound Interest

You previously learned about compound interest and modeled the accumulation of com-
pound interest by Pn = P0(1 + r)n, where P0 is the principal investment, r is the yearly
interest rate, and n is the number of elapsed years. This sequence describes the value of
an investment accumulating interest, but most people add to their savings on a regular
schedule. We can write a sequence to model the value of a savings account that the owner
makes regular deposits into.

Example: Suppose you open a savings account with an initial deposit of $3,000 and you
plan to deposit an additional $1,200 at the end of every year. If your savings account has
an annual interest rate of 3.25%, how long will it take you to save $10,000?

Solution: We can write a recursive definition for the sequence. At the end of each year,
the account will gain the interest on the entirety of the previous year’s balance plus $1200:

Pn = Pn−1(1+ 0.0325) + $1200

With an initial investment P0 = $3000. We can write out the first few terms to find how
many years it will take to save $10,000:

Year Savings
0 $3,000
1 $4,297.50
2 $5,637.17
3 $7,020.38
4 $8,448.54
5 $9.923.12
6 $11,445.62

The accumulation of interest with deposits is better described by a sequence than a func-
tion. That’s because the deposits are happening at discrete times, not continuously.
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Exercise 3

.You invest $1500 at 5%, compounded an-
nually. Write an explicit formula that
describes the value of your investment
every year. What will your investment
be worth after 10 years? Is the sequence
convergent or divergent? Explain.

Answer on Page 13

Working Space

1.4.2 Population Growth

Sequences can be used to model a reproducing population that is being occasionally culled
from or added to. Similar to compound interest, a population of living things (plants,
animals, fungi, etc.) reproducing at a rate r can be modeled with an exponential function:

Pn = P0(1+ r)n

Where P0 is the initial population, r is the yearly reproductive rate, and n is the number
of years elapsed.

Example: Suppose the population of deer in a national park is estimated to be 6,500. If
the deer reproduce at a rate of 8% per year and wolves hunt and kill 500 deer per year,
how many deer will be in the park in 5 years?

Solution: We can write a recursive sequence:

Pn = Pn−1(1+ 0.08) − 500

P0 = 6500

And calculate P5 (we round to the nearest whole number because half of a deer is not a
living deer):

Year Population
1 6500(1.08) − 500 6520
2 6520(1.08) − 500 6542
3 6542(1.08) − 500 6565
4 6565(1.08) − 500 6590
5 6590(1.08) − 500 6617
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There will be 6617 deer in the park after 5 years.

Exercise 4

.A farmer keeps his pond stocked with
fish. If the fish are eaten by predators at
a rate of 5% per month and the farmer
can afford to restock the pond with 10
fish every 6 months. If the farmer starts
with 100 fish, how many total fish will
he have lost to predation after 4 years?

Answer on Page 14

Working Space

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.
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Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 2)

1. 2
3 ,

4
5 ,

8
7 ,

16
9 , 32

11

2. 0, -1, 0, 1, 0

3. 1, 2, 7, 32, 157

4. 6, 3, 1, 1
4 ,

1
20

Answer to Exercise 2 (on page 4)

1. convergent, 5

2. divergent

3. convergent, 2

4. convergent, -1

5. divergent

Answer to Exercise 3 (on page 10)

Out principal is P = 1500 and the interest rate is r = 0.06. After n years, your investment
will be worth an = 1500(1.06)n. For n = 10, your investment will be valued at a10 =
$1500(1.06)10 = $2686.27 (that’s over $1000 in interest!). To determine if the sequence is
convergent or divergent, we examine the limit as n → ∞:

lim
n→∞ 1500(1.06)n = 1500 · lim

n→∞(1.06)n = 1500 ·∞ = ∞
The sequence is divergent.

13
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Answer to Exercise 4 (on page 11)

The number of fish in the pond is:

Pn = Pn−1(0.95)
6 + 50

P0 = 100

where n is the number of 6-month periods that have passed. The four year period is given
by 1 ≤ n ≤ 8. The amount lost to predation every 6 months is given by Pn−1(1− 0.956).

n Fish Population Lost to Predators
0 100
1 84 26
2 71 22
3 62 19
4 56 17
5 51 15
6 48 14
7 45 13
8 43 12

Adding up all the fish lost to predators, we find that over 4 years the farmer loses 138 fish.
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