
Chapter 1

Riemann Sums

1.1 The Meaning of the Area Under a Function

Let’s look at the example of a hammer tossed in the air from a previous chapter. As you
may recall, if a hammer is tossed up from the ground at 5 m/s, its velocity can be described
as v(t) = 5 − 9.8t (on Earth, where the acceleration due to gravity is approximately −9.8
m
s2
). The velocity function of our hammer from when it is tossed (t = 0) to when it hits

the ground t ≈ 1.02) is shown in figure 1.1.
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Figure 1.1: Velocity of a hammer thrown upwards at 5 m/s

Now, suppose we only have this velocity function and we want to know how high above
its initial position the hammer is tossed. Examine the graph: at approximately what time
does the hammer reach its peak height? (Hint: what should the hammer’s velocity be
when it reaches its peak?). At the highest point of its flight, the hammer’s velocity will be
0 m

s , which occurs at approximately t = 0.5s (it’s actually t = 0.5102s but we don’t need
to be that precise for this example).

Now that we know when the hammer reaches its peak, how can we determine how high
that peak is? Recall that velocity is the slope of the position-time graph. Since slope is
change in position divided by change in time (in this case, as time is on the x-axis and
position on the y-axis), then the slope must have units of [position]/[time] which could
be m

s ,
miles
hr , etc. These are units of velocity!

In figure 1.1, you can see that the units on the x-axis are seconds and on the y-axis the
units are m

s . If we are looking for a displacement (that is, how far from its initial position
the hammer has traveled), we are looking for a solution with units of meters. To yield
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2 Chapter 1. RIEMANN SUMS

an answer with those units, we wouldn’t use the slope of the graph: this would yield an
answer with units m

ss , the units for acceleration. Instead, we need to multiply! The area
between the velocity function and the x-axis (see figure 1.2) can be found this way:

Area =
1

2
bh

where b is the base of the triangle and h is the height.

Area =
1

2
(0.5s)(5

m

s
)

Area = 1.25m
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Figure 1.2: The area under v(t) from x = 0 to x = 0.5 is equal to the displacement of the
hammer

Notice that when multiplying the change in time (0.5 s) by the change in velocity (1.25
m
s ), the seconds units cancel, yielding a result with units of meters. Therefore, the ham-
mer reaches a peak height of ≈ 1.25 m, which you can confirm by examining the graph
originally presented for the hammer toss in the chapter on graph shape.

1.1.1 Determining the Meaning of the Area with Units
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Exercise 1

.What units will the area shown in the
graph have? Based on your answer, does
the area represent a displacement, a net
change in velocity, or a net change in
acceleration? Calculate the shaded area
[hint: areas below the x-axis are nega-
tive]. Write a sentence in plain English
explaining what the are you calculated
means.
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Answer on Page 21

Working Space
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Exercise 2

.The graph below shows historical data
of the number of deaths due to SARS in
Singapore over several months in 2003.
What would the area under the curve
represent?
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Answer on Page 21

Working Space

Exercise 3

.Oil leaked from a tank at a rate of r(t)
liters per hour. A site engineer recorded
the leak rate over a period of 10 hours,
shown in the table. Plot the data. How
could you estimate the total volume of
oil lost?

t(h) 0 2 4 6 8 10
r(t)(L/h) 8.7 7.6 6.8 6.2 5.7 5.3

Answer on Page 21

Working Space
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1.2 Estimating the area under functions

In the hammer example above, it was easy to determine the area under the function, since
the area took the shape of a triangle. But what about finding the area under a more
complex function, such as f(x) = sinx+ x (shown in figure 1.3)?
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Figure 1.3: f(x) = sin x+ x

How can we determine the area under f(x) = sin x + x from x = 0 to x = π? We can
estimate the area of that region by dividing the region into rectangles, finding the areas
of the rectangles, and adding the areas. As an example, we will divide the region under
f(x) = sin x+ x into 4 intervals, shown in figure 1.4.
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Figure 1.4: f(x) = sin x+ x divided into 4 regions

As you can see in figure 1.4, each rectangle will have a width of π
4 . But what about

the height? One way is to use the value of the function at the rightmost value of each
rectangle, as shown in figure 1.5.
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Figure 1.5: Four rectangle sections with heights determined by rightmost value of f(x) on
each interval

We can easily calculate the areas of each of these rectangles:

π

4
× f(

π

4
) +

π

4
× f(

π

2
) +

π

4
× f(

3π

4
) +

π

4
× f(π)

≈ π

4
× (1.4925+ 2.5708+ 3.0633+ 3.1416) = 8.0646

Based on figure 1.5, will the calculated area be an overestimate or an underestimate? Each
of the rectangles overshoots the function, so this will be an overestimate. What about using
the leftmost value of f(x) of each interval to determine the height of the rectangles? This
is shown in figure 1.6.
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Figure 1.6: Four rectangle sections with heights determined by leftmost value of f(x) on
each interval
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Figure 1.7: sin x+x broken into 10 intervals using either the left or right value to determine
the height.

Notice that because f(0) = 0, the height of the first rectangle is zero, so we don’t see it on
the graph. To find the area of these rectangles:

π

4
× f(0) +

π

4
× f(

π

4
) +

π

4
× f(

π

2
) +

π

4
× f(

3π

4
)

≈ π

4
× (0+ 1.4925+ 2.5708+ 3.0633) = 5.5972

This is an underestimate. Therefore, the true value of the area under f(x) = sin x + x is
between 5.5972 and 8.0646. This is an awfully wide window! We can narrow our estimate
by increasing the number of intervals. Graphs of f(x)with 10 intervals are shown in figure
1.7.

The total area for the left-determined rectangles is ≈ 6.4248 and for the right-determined
is ≈ 7.4118. Therefore, we have narrowed the range for the true area under the curve to
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6.4248 < A < 7.4118. In general, as you increase the number of intervals, you get closer
to the true area.

For a strictly increasing function, the right sum will be an overestimate and the left sum
will be an underestimate of the true area under the curve. In the exercise below, you will
examine a strictly decreasing function:

Exercise 4

.Estimate the area under the graph of f(x) =
1
x from x = 1 to x = 2 using four rect-
angles and right endpoints. Sketch the
graph and the rectangles. Is your es-
timate an overestimate or an underesti-
mate? Repeat using left endpoints.

Answer on Page 22

Working Space

You should have found that for the strictly decreasing function f(x) = 1
x , the right-

determined sum is an underestimate while the left-determined sum is an overestimate.
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1.3 The Riemann Sum

In the previous section, we estimated the area under functions by dividing the area into
approximating rectangles. This method is called a Riemann Sum. We will use a general
example to formally define the Riemann sum. Consider a generic function divided into
strips of equal width (shown in figure 1.8). The width of each strip is

∆x =
b− a

n

where a is the left endpoint of the interval, b is the right endpoint of the interval, and n

is the number of strips. Then the right endpoints of the sections are

x1 = a+ ∆x

x2 = a+ 2∆x

. . . xn = a+ n∆x

As above, we can use the value of the function to determine the height of a rectangle
whose area approximates the area of the section. (E.g. for the ith strip, the width is ∆x

and the height is f(xi), see figure 1.9). Then the total area approximated by the rectangles
is

Rn = f(x1)∆x+ f(x2)∆x+ . . .+ f(xn)∆x

This is the formal definition of the Right Riemann Sum. You can also take a Left Riemann
Sum or a Midpoint Riemann Sum, as discussed below.

1.3.1 Right Riemann Sums

As seen above, a right Riemann sum uses the right-most value of f(x) to determine the
height of the rectangle (an example is shown in figure 1.10). We will refer to the right
Riemann sum as Rn, where n is the number of intervals.

1.3.2 Left Riemann Sums

When taking a left Riemann sum, the height of the rectangle is determined by the value of
the function at the lower (left-most) x-value. See figure 1.11. We will refer to left Riemann
sums as Ln, where n is the number of intervals. Then the total area approximated by a
Left Riemann sum is is

Ln = f(x0)∆x+ f(x1)∆x+ . . .+ f(xn−1)∆x

.
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Figure 1.8: A representative function divided into n strips of equal width

a x1 x2
. . . xi−1 xi

. . . xn−1 b

x

y

Figure 1.9: A representative function divided into n rectangles of equal width, with rect-
angle height determined by the right endpoint of the subinterval
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Figure 1.10: R4 for f(x) = 1
x
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Figure 1.11: L4 for f(x) = 1
x
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Figure 1.12: M4 of f(x) = 1
x

1.3.3 Midpoint Riemann Sums

A midpoint Riemann sum uses the value of f(x) at the midpoint of the division to deter-
mine the height of the rectangle, as shown in figure 1.12. We will refer to the midpoint
Riemann sum as Mn, where n is the number of intervals. Then the total area approxi-
mated by the rectangles is

Mn = f(
x0 + x1

2
)∆x+ f(

x1 + x2
x

)∆x+ . . .+ f(
xn−1 + xn

2
)∆x

.

1.3.4 Riemann sum sigma notation

As you may recall, mathematicians use sigma notation to concisely express sums, such as
Riemann sums. We can re-write the definition of a right Riemann sum in sigma notation:

n∑
i=1

f(xi)∆x

where n is the number of subintervals. Then, the actual area under the curve is the limit
as n approaches ∞ of the above sum. Let’s apply this by writing a sum that represents
the area, A, of the region that lies between the x-axis and the function f(x) = e−x from
x = 0 to x = 2.

First, we find an expression for ∆x:

∆x =
2− 0

n
=

2

n



Section 1.3 THE RIEMANN SUM 13

Recall that xi = a + i∆x. Since a (the beginning of the interval) = 0, then the general
expression for xi in this case is 0+ i× 2

n = 2i
n . Substituting our expressions for ∆x and xi

into the sum formula, we see that:

A = lim
n→∞

n∑
i=1

e
−2i
n

2

n

We can also interpret a sum as the area under a specific function. Take the expression:

lim
n→∞

n∑
i=1

π

n
sin iπ

n

There are two expressions in the sum: π
n and sin iπ

n . It makes sense that ∆x = π
n and

f(xi) = sin iπ
n . Because ∆x = b−a

n = π
n , it follows that the interval of the area has a width

of π. We will need to examine the other expression, sin iπ
n to determine an exact window.

Since f(xi) = sin iπ
n , it follows that the function we are looking for is a sine function. Fur-

ther, the expression for xi = iπ
n . Recall that xi = a+i∆x, where a is the left-most boundary

of the interval. Substituting what we have found already, we see that:

xi = a+ i
π

n
=

iπ

n

which implies that a = 0. Since we have established the interval is π wide, we can infer
that b = π. Therefore, the limit limn→∞∑n

i=1
π
n sin iπ

n is equal to the area under f(x) = sin x

from x = 0 to x = π.

Exercise 5

.Use the formal definition of a Right Rie-
mann sum to write a limit of a sum that
is equal to the total area under the graph
of f on the specified interval. Do not
evaluate the limit.

1. f(x) = 2x
x2+1

, 1 ≤ x ≤ 3

2. f(x) = x2 +
√
1+ 2x, 4 ≤ x ≤ 7

3. f(x) =
√
sin x, 0 ≤ x ≤ π

Answer on Page 22

Working Space
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Event Time (s) Velocity (ft/s)
Launch 0 0

Begin roll maneuver 10 185
End roll maneuver 15 319
Throttle to 89% 20 447
Throttle to 67% 32 742
Throttle to 104% 59 1325

Maximum dynamic pressure 62 1445
Solid rocket booster separation 125 4151

Figure 1.13: Speed of Endeavour from launch to booster separation

Exercise 6

.Use the formal definition of a Right Rie-
mann sum to find a region on a graph
whose are is equal to the given limit. Do
not evaluate the limit.

1. limn→∞∑n
i=1

3
n

√
1+ 3i

n

2. limn→∞∑n
i=1

π
4n tan iπ

4n

Answer on Page 23

Working Space

1.3.5 Real-world Riemann Sums

Sometimes we are working from real data and the intervals aren’t evenly spaced. That’s
ok! We can still use Riemann sums to make an estimate. Consider the velocity data from
the 1992 launch of the space shuttle Endeavour, shown in tabular form in figure 1.13:

We can use a Riemann sum to estimate how far the space shuttle traveled in the first 62
seconds of flight. First, let’s visualize our data (see figure 1.14). There are 7 time intervals
from the data, but we only need the first 6. We can find a reasonable range for the distance
the space shuttle travels by finding the left and right Riemann sums. Remember: because
these data are strictly increasing, the left sum will be our lower bound and the right sum
will be our upper bound.

First, we’ll find L6. The width of the first interval is 10 seconds (10−0 = 10) and the height
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Figure 1.14: Plot of time, velocity data for the Endeavour

of the rectangle will be v(0) = 0. Calculations for the additional intervals are shown in
the table:

Interval Width(s) Height(ft/s) Area(ft)
1 10 0 0
2 5 185 925
3 5 319 1595
4 12 447 5364
5 27 742 20034
6 3 1325 3975

Adding the areas, we find the lower limit for the distance traveled is 31,893 feet. We can
determine the upper bound, R6, in a similar manner:

Interval Width(s) Height(ft/s) Area(ft)
1 10 185 1850
2 5 319 1595
3 5 447 2235
4 12 742 8904
5 27 1325 35775
6 3 1445 4335

Adding the areas, we find the upper limit for the distance traveled is 54,694 feet. Therefore,
the Endeavour traveled between 31,893 and 54,694 feet during the first 62 seconds of this
flight.
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1.4 Code for a Riemann Sum

You can create a program that automatically calculates a Riemann sum. Create a file called
riemann.py and type the following into it:

import matplotlib.pyplot as plt
import sys
import math

from matplotlib.table import Rectangle

# Did the user supply two arguments?
if len(sys.argv) != 3:

print(f"Usage: {sys.argv[0]} <stop> <divisions>")
print(f"Numerically integrates 1/x from 1 to <stop>.")
print(f"Calculates the value of 1/x at <divisions> spots in the range.")
exit(1)

# Check to make sure the number of divisions is greater than zero?
divisions = int(sys.argv[2])
if divisions <= 0:

print("ERROR: Divisions must be at least 1.")
exit(1)

# Is the stopping point after 1.0?
stop = float(sys.argv[1])
if stop <= 1.0:

print("ERROR: Stopping point must be greater than 1.0")
exit(1)

start = 1.0
step_size = (stop - start)/divisions

print(f"Step size is {step_size:.5f}.")
x_values = []
y_values = []
sum = 0.0
for i in range(divisions):

current_x = start + i * step_size
current_y = 1.0/current_x
area = current_y * step_size
print(f"{i}: 1 / {current_x:.3f} = {current_y:4f}, area of rect = {area:8f} ")

x_values.append(current_x)
y_values.append(current_y)
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sum += area
print(f"\tCumulative={sum:.3f}, ln({current_x:.3f})={math.log(current_x):.3f}")

print(f"Numerical integration of 1/x from 1.0 to {stop:.4f} is {sum:.4f}")
print(f"The natural log of {stop:.4f} is {math.log(stop):.4f}")

# Create data for the smooth 1/x line
SMOOTH_DIVISIONS = 200
smooth_start = start - 0.15
smooth_stop = stop + 1.0
smooth_step = (smooth_stop - smooth_start)/SMOOTH_DIVISIONS
smooth_x_values = []
smooth_y_values = []
for i in range(SMOOTH_DIVISIONS):

current_x = smooth_start + i * smooth_step
current_y = 1.0/current_x
smooth_x_values.append(current_x)
smooth_y_values.append(current_y)

# Put it on a plot
fig, ax = plt.subplots()
ax.set_xlim((smooth_x_values[0], smooth_x_values[-1]))
ax.set_ylim((0, smooth_y_values[0]))
ax.set_title("Riemann Sums for 1/x")

# Make the Riemann rects
for i in range(divisions):

current_x = x_values[i]
next_x = current_x + step_size
current_y = y_values[i]
rect = Rectangle((current_x, 0), step_size, current_y, edgecolor="green", facecolor="lightgreen")
ax.add_patch(rect)

# Make the true 1/x curve
ax.plot(smooth_x_values, smooth_y_values, c="k", label="1/x")

# Show the user
plt.show()

This program will calculate and display a graph of the left Riemann sum of 1
x from 1 to

the provided stop value with the indicated number of subintervals. When you run it,
you’ll see a graph in a new window and something like this in the terminal:

Step size is 0.40000.
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0: 1 / 1.000 = 1.000000, area of rect = 0.400000
Cumulative=0.400, ln(1.000)=0.000

1: 1 / 1.400 = 0.714286, area of rect = 0.285714
Cumulative=0.686, ln(1.400)=0.336

2: 1 / 1.800 = 0.555556, area of rect = 0.222222
Cumulative=0.908, ln(1.800)=0.588

3: 1 / 2.200 = 0.454545, area of rect = 0.181818
Cumulative=1.090, ln(2.200)=0.788

4: 1 / 2.600 = 0.384615, area of rect = 0.153846
Cumulative=1.244, ln(2.600)=0.956

5: 1 / 3.000 = 0.333333, area of rect = 0.133333
Cumulative=1.377, ln(3.000)=1.099

6: 1 / 3.400 = 0.294118, area of rect = 0.117647
Cumulative=1.495, ln(3.400)=1.224

7: 1 / 3.800 = 0.263158, area of rect = 0.105263
Cumulative=1.600, ln(3.800)=1.335

8: 1 / 4.200 = 0.238095, area of rect = 0.095238
Cumulative=1.695, ln(4.200)=1.435

9: 1 / 4.600 = 0.217391, area of rect = 0.086957
Cumulative=1.782, ln(4.600)=1.526

Numerical integration of 1/x from 1.0 to 5.0000 is 1.7820
The natural log of 5.0000 is 1.6094

Exercise 7

.Use the python program you created to
find L10, L50, L100, L500, L1000, and L5000
for the function 1

x from x = 1 to x = 5.
What do you notice about the results?

Answer on Page 23

Working Space

1.5 Riemann Sum Practice
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Exercise 8

.

t (hours) 4 7 12 15
R(t) (L/hr) 6.5 6.2 5.9 5.6

A tank contains 50 liters of water after 4
hours of filling. Water is being added
to the tank at rate R(t). The value of
R(t) at select times is shown in the ta-
ble. Using a right Riemann sum, esti-
mate the amount of water in the tank af-
ter 15 hours of filling.

Answer on Page 23

Working Space

Exercise 9

.Let f(x) = x − 2 ln x. Estimate the area
under f from x = 1 to x = 5 using four
rectangles and the value of f at the mid-
point of each interval. Sketch the curve
and your approximating rectangles.

Answer on Page 24

Working Space
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Exercise 10

.A graph of a car’s velocity over a pe-
riod of 60 seconds is shown. Estimate
the distance traveled during this period.
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Answer on Page 24

Working Space

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.
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Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 3)

The units on the x-axis are s and the units on the y-axis are m
s2
. The area then would have

units of s× m
s2

= m
s . Based on the units, the area represents a net change in velocity. The

area above and below the axis are equal (4.5m
s ), therefore the total area is 0. This means

the object’s starting and ending velocity are the same.

Answer to Exercise 2 (on page 4)

The units of the area will be days × deaths
day = deaths. The area under the curve repre-

sents the total number of people who died of SARS in Singapore during the time period
represented [from March 1 to May 24 (if you took the time to do the math for the dates)].

Answer to Exercise 3 (on page 4)

2 4 6 8 10

2

4

6

8

10

t(h)

r(t)(L/h)

Based on the units, the area under the data would represent the total oil lost. One way to
estimate this area would be to create rectangles, but there are other valid methods.

21
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Answer to Exercise 4 (on page 8)

Right-determined sum graph:

1 2

0.5

1

x

y

The area of the right-determined sum is 0.25× (0.8+ 0.6667+ 0.5714+ 0.5) = 0.4202. This
is an underestimate of the actual area.
Left-determined sum graph:

1 2

0.5

1

x

y

The area of the left-determined sum is 0.25× (1+ 0.8+ 0.6667+ 0.5714) = 0.7595. This is
an overestimate of the actual area.

Answer to Exercise 5 (on page 13)

1. ∆x = 3−1
n = 2

n and xi = 1+i 2n = 1+ 2i
n . Substituting, we get limn→∞∑n

i=1

2(1+ 2i
n
)

(1+ 2i
n
)2+1

· 2n

2. ∆x = 7−4
n = 3

n and xi = 4 + 3i
n . Substituting, we get limn→∞∑n

i=1[(4 + 3i
n )

2 +√
1+ 2(4+ 3i

n )]
3i
n
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3. ∆x = π−0
n = π

n and xi =
iπ
n . Substituting, we get limn→∞∑n

i=1

√
sin iπ

n
π
n

Answer to Exercise 6 (on page 14)

1. ∆x = 3
n , which implies b − a = 3. We could interpret

√
1+ 3i

n two ways: either
f(x) =

√
1+ x and xi =

3i
n or f(x) =

√
x and xi = 1+ 3i

n . In the first case, we can find
that a = 0 and b = 3, so the limit of the sum represents the area under f(x) =

√
1+ x

from x = 0 to x = 3. For the second case, we can find that a = 1 and b = 4, so the
limit of the sum represents the area under f(x) =

√
x from x = 1 to x = 4.

2. ∆x = π
4n which implies b−a = π

4 . We can see that xi = iπ
4n , which implies a = 0 and

therefore also that b = π
4 . Therefore, the limit of the sum represents the total area

under f(x) = tan x from x = 0 to x = π
4 .

Answer to Exercise 7 (on page 18)

Number of Intervals Calculated Area
10 1.7820
50 1.6419
100 1.6256
500 1.6126
1000 1.6110
5000 1.6098

The area approaches the natural log of the endpoint, ln 5 ≈ 1.6094.

Answer to Exercise 8 (on page 19)

The volume of water will be the amount of water at 4 hours (50 liters) plus the area under
the graph of R(t) from t = 4 to t = 15. We will estimate this area with a right Riemann
sum. The approximate volume added from t = 4 to t = 7 is (7 − 4) ∗ (6.2) = 18.6 liters.
The approximate volume added from t = 7 to t = 12 is (12 − 7) ∗ (5.9) = 29.5 liters. The
approximate volume added from t = 12 to t = 15 is (15−12)∗(5.6) = 16.8 liters. Therefore,
the approximate total volume of water in the tank at t = 15 is 50+18.6+29.5+16.8 = 114.9

liters.
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Answer to Exercise 9 (on page 19)

We will divide the area from x = 1 to x = 5 into four intervals at x = 2, x = 3, and x = 4.
Then we will find the value of f(x) at the midpoint of each interval:

Interval Midpoint Value of f(x) at midpoint
1 1.5 ≈ 0.68907

2 2.5 ≈ 0.66742

3 3.5 ≈ 0.99447

4 4.5 ≈ 1.49185

Using the values in the table, we can make a possible sketch of f(x):

2 3 4 5

0.8

1

1.2

1.4

1.6

x

f(x)

And we calculate the total area in the rectangles:

1× (0.68907+ 0.66742+ 0.99447+ 1.49185 = 3.84281

Answer to Exercise 10 (on page 20)

The question allows the student to choose the type of sum (left, right, or midpoint) and
the number of intervals. A possible solution is given, but there are many ways to answer
the question.
The tricky part here is noticing the units! In order to have a solution in kilometers, we’ll
need to convert km/hr to m/s when we calculate the areas. A possible solution is to divide
the graph into 6 intervals (one every 10 seconds) and use a right Riemann sum.



25

10 20 30 40 50 60

40

80

120

160

200

240

t (seconds)

v (km/hr)

We can use the graph to estimate the height of each rectangle. Some reasonable estimates
are f(10) = 130km

hr ≈ 36.1ms
s , f(20) = 180km

hr = 50m
s , f(30) = 210km

hr ≈ 58.3m
s , f(40) =

230km
hr ≈ 63.9m

s , f(50) = 235km
hr ≈ 65.3m

s , and f(60) = 240km
hr ≈ 66.7m

s . [Any values within
±5 of the listed values are reasonable.] Noting that each interval is 10 sec wide and usingß
the estimates of f(x) listed, we can estimate that the distance traveled is 10 sec× (36.1m

s +
50m

s + 58.3m
s + 63.9m

s + 65.3m
s + 66.7m

s ) = 3403 meters.
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