
Chapter 1

Python Lists

Watch CS Dojo’s Introduction to Lists in Python video at https://www.youtube.com/
watch?v=tw7ror9x32s

To review, Python list is an indexed collection. The indices start at zero. You can create a
list using square brackets.

You are now going to write a program that makes an array of strings. Type this code into
a file called faves.py:

favorites = ["Raindrops", "Whiskers", "Kettles", "Mittens"]
favorites.append("Packages")
print("Here are all my favorites:", favorites)
print("My most favorite thing is", favorites[0])
print("My second most favorite is", favorites[1])
number_of_faves = len(favorites)
print("Number of things I like:", number_of_faves)

for i in range(number_of_faves):
print(i, ": I like", favorites[i])

Run it:

$ python3 faves.py
Here are all my favorites: ['Raindrops', 'Whiskers', 'Kettles', 'Mittens', 'Packages']
My most favorite thing is Raindrops
My second most favorite is Whiskers
Number of things I like: 5
0 : I like Raindrops
1 : I like Whiskers
2 : I like Kettles
3 : I like Mittens
4 : I like Packages

After you have run the code, study it until the output makes sense.

1

https://www.youtube.com/watch?v=tw7ror9x32s
https://www.youtube.com/watch?v=tw7ror9x32s

2 Chapter 1. PYTHON LISTS

Exercise 1 Assign into list

.Before you list the items, replace ”Mit-
tens” with ”Gloves”.

Answer on Page 9

Working Space

1.1 Evaluating Polynomials in Python

First, before you go any further, you need to know that raising a number to a power is
done with ** in Python. For example, to get 52, you would write 5**2.

Back to polynomials: if you had a polynomial like 2x3 − 9x + 12, you could write it like
this: 12x0 + (−9)x1 + 0x2 + 2x3. We could use this representation to keep a polynomial in
a Python list. We would simply store all the coefficients in order:

pn1 = [12,-9,0,2]

In the list, the index of each coefficient would correspond to the degree of that monomial.
For example, in the list, 2 is at index 3, so that entry represents 2x3.

In the last chapter, you evaluated the polynomial x3 − 3x2 + 10x − 12 at x = 4. Now you
will write code that does that evalution. Create a file called polynomials.py and type in
the following:

def evaluate_polynomial(pn, x):
sum = 0.0
for degree in range(len(pn)):

coefficient = pn[degree]
term_value = coefficient * x ** degree
sum = sum + term_value

return sum

pn1 = [-12.0, 10.0, -3.0, 1.0]
y = evaluate_polynomial(pn1, 4.0)
print("Polynomial 1: When x is 4.0, y is", y)

Run it. It should evaluate to 44.0.

Section 1.2 WALKING THE LIST BACKWARDS 3

1.2 Walking the list backwards

Now you are going to make a function that makes a pretty string to represent your poly-
nomial. Here is how it will be used:

def polynomial_to_string(pn):
...Your Code Here...

pn_test = [-12.0, 10.0, 0.0, 1.0]
print(polynomial_to_string(pn1))

This would output:

1.0x**3 + 10.0x + -12.0

This is not as simple as you might hope. In particular:

• You should skip the terms with a coefficient of zero

• The term of degree 1 has an x, but no exponent

• The term of degree 0 has neither an x nor an exponent

• Standard form demands that you list the terms in the reverse order from that of
your coefficients list. You will need to walk the list from last to first.

Add this function to your polynomials.py file after your evaluate_polynomial function:

def polynomial_to_string(pn):

Make a list of the monomial strings
monomial_strings = []

Start at the term with the largest degree
degree = len(pn) - 1

Go through the list backwards stop after constant term
while degree >= 0:

coefficient = pn[degree]

Skip any term with a zero coefficient
if coefficient != 0.0:

Describe the monomial
if degree == 0:

4 Chapter 1. PYTHON LISTS

monomial_string = "{}".format(coefficient)
elif degree == 1:

monomial_string = "{}x".format(coefficient)
else:

monomial_string = "{}x^{}".format(coefficient, degree)

Add it to the list
monomial_strings.append(monomial_string)

Move to the previous term
degree = degree - 1

Deal with the zero polynomial
if len(monomial_strings) == 0:

monomial_strings.append("0.0")

Make a string that joins the terms with a plus sign
return " + ".join(monomial_strings)

Note that in a list n items, the indices go from 0 to n − 1. When we are walking the list
backwards, we start at len(pn) - 1 and stop at zero.

Look over the code and google the functions you aren’t familar with. For example, if you
want to know about the (join) function, google for “python join”.

Now, change your code to use the new function:

pn1 = [-12.0, 10.0, -3.0, 1.0]
y = evaluate_polynomial(pn1, 4.0)
print("y =", polynomial_to_string(pn1))
print(" When x is 4.0, y is", y)

Run the program. Does the function work?

Section 1.3 PLOT THE POLYNOMIAL 5

Exercise 2 Evaluate Polynomials

.Using the function that you just wrote,
add a few lines of code to polynomials.py
to evaluate the following polynomials:

• Find 4x4 − 7x3 − 2x2 + 5x + 2.5 at
x = 8.5. It should be 16481.875

• Find 5x5 − 9 at x = 2.0. It should
be 151.0

Answer on Page 9

Working Space

1.3 Plot the polynomial

We can evaluate a polynomial at many points and plot them on a graph. You are going
to write the code to do this. Create a new file called plot_polynomial.py. Copy your
evaluate_polynomial function into the new file.

Add a line at the beginning of the program that imports the plotting library matplotlib:

import matplotlib.pyplot as plt

After the evaluate_polynomial function:

• Create a list with polynomial coefficients.

• Create two empty arrays, one for x values and one for y values.

• Fill the x array with values from -3.5 to 3.5. Evaluate the polynomial at each of these
points; put those values in the y array.

• Plot them

Like this:

x**3 - 7x + 6
pn = [6.0, -7.0, 0.0, 1.0]

6 Chapter 1. PYTHON LISTS

These lists will hold our x and y values
x_list = []
y_list = []

Start at x=-3.5
current_x =-3.5

End at x=3.5
while current_x <= 3.5:

current_y = evaluate_polynomial(pn, current_x)

Add x and y to respective lists
x_list.append(current_x)
y_list.append(current_y)

Move x forward
current_x += 0.1

Plot the curve
plt.plot(x_list, y_list)
plt.grid(True)
plt.show()

You should get a beautiful plot like this:

Section 1.3 PLOT THE POLYNOMIAL 7

If you received an error that the matplotlib was not found, use pip to install it:

$ pip3 install matplotlib

Exercise 3 Observations

.Where does your polynomial cross the
y-axis? Looking at the polynomial x3 −
7x+6, could you have guessed that value?

Where does your polynomial cross the
x-axis? The places where a polynomial
crosses the x-axis is called its roots. Later
in the course, you will learn techniques
for finding the roots of a polynomial.

Answer on Page 9

Working Space

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.

https://kontinua.org/
https://kontinua.org/

Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 2)

favorites[3] = "Gloves"

Answer to Exercise 2 (on page 5)

pn2 = [2.5, 5.0, -2.0, -7.0, 4.0]
y = evaluate_polynomial(pn2, 8.5)
print("Polynomia 2: When x is 8.5, y is", y)

pn3 = [-9.0, 0.0, 0.0, 0.0, 0.0, 5.0]
y = evaluate_polynomial(pn3, 2.0)
print("Polynomial 3: When x is 2.0, y is", y)

Answer to Exercise 3 (on page 7)

The polynomial crosses the y-axis at 6. When x is zero, all the terms are zero except the
last one. Thus, you can easily tell that x3 − 7x+ 6 will cross the y-axis at y = 6.

Looking at the graph, you tell that the curve crosses the y-axes near -3, 1 and 2. If you
plug those numbers into the polynomial, you would find that it evalutes to zero at each
one. Thus, x = −3, x = 1, and x = 2 are roots.

9

10 Chapter A. ANSWERS TO EXERCISES

	Python Lists
	Evaluating Polynomials in Python
	Walking the list backwards
	Plot the polynomial

	Answers to Exercises

