
Chapter 1

Power Series

Consider the function f(x) = 1
1−x . This looks similar to the value of convergent geometric

series,
∑∞

n=1 ar
n−1 = a

1−r . If we let a = 1 and r = x, then we see that
∑∞

n=1 x
n−1 = 1

1−x .
We can reindex to begin at n = 0 and see that:

1

1− x
=

∞∑
n=0

xn

This is a power series. We use power series in place of functions for many applications:
integrals where an explicit antiderivative don’t exist, solving differential equations, and
computer scientists representing functions on computers are a few examples. Consider
f(x) = 1

1−x2
. What is

∫
f(x)dx? We can’t directly use u-substitution, and this isn’t a deriva-

tive of any inverse trigonometric function. [You may have realized we could integrate this
explicitly by using partial fractions, but this is not true for other functions, and we are
using this as a demonstration anyway.] One way to evaluate this integral would be to
represent f(x) as a power series, then integrate the series. This is easier, since we know
how to take the integral of any polynomial (

∫
xn dx = 1

n+1x
n+1 + C). First, we discuss

what power series are further.

1.1 Power Series

Power series are series of the form
∞∑
n=0

cnx
n = c0 = c1x+ c2x

2 + c3x
3 + · · ·+ cnx

n

for some fixed x. Depending on x, the series may converge or diverge. For example, the
power series

∑∞
n=0 x

n converges for −1 < x < 1 and diverges for all other values of x. This
is because

∑∞
n=0 x

n is essentially a geometric series with r = x, which we already know
converges for |r| < 1.

The form given above is for a power series centered on 0, but a power series can be centered
on any value, a. In that case, it looks like this:

∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · ·+ cn(x− a)n

1



2 Chapter 1. POWER SERIES

Which we say is a power series in (x − a), or a power series centered at a, or a power series
about a.

Example: Find a power series representation for f(x) = 2x−4
x2−4x+3

.

Solution: Since we know 1
1−x =

∑∞
n=0 x

n, we will use partial fractions to decompose the
function into two fractions. (The process is left as an exercise for the student.) We find
that:

2x− 4

x2 − 4x+ 3
=

1

x− 1
+

1

x− 3

Noting that 1
x−1 = (−1) · 1

1−x , we can say that:

1

x− 1
= (−1) ·

∞∑
n=0

xn

Now let’s look at 1
x−3 . We can show that:

1

x− 3
=

1
3

x
3 − 1

=
1

3

1
x
3 − 1

=
−1

3

1

1− x
3

Substituting x
3 for x into 1

1−x =
∑∞

n=0 x
n we see that:

1

1− x
3

=

∞∑
n=0

(x
3

)n

And therefore
1

x− 3
=

(
−1

3

) ∞∑
n=0

(x
3

)n

Adding the terms, we see that:

1

x− 1
+

1

x− 3
= (−1)

∞∑
n=0

xn +

(
−1

3

) ∞∑
n=0

(x
3

)n

1.2 Power Series Convergence

Sometimes, you’ll be asked to find the value(s) of x for which a power series converges.
To do this, choose a test to apply and then find x such that the test is passed.

Example: For what values of x is the series
∑∞

n=0 n!x
n convergent?

Solution: We will apply the Ratio Test (since there is a factorial in the series) and find x

such that limn→∞ ∣∣∣an+1

an

∣∣∣ < 1.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n+ 1)!xn+1

n!xn

∣∣∣∣
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= lim
n→∞ (n+ 1)n!x · xn

n!xn
= lim

n→∞ (n+ 1) · x
1

Which converges to 0 when x = 0 and diverges for all other values of x. Therefore,∑∞
n=0 n!x

n converges if x = 0.

Example: For what values of x does the series
∑∞

n=1
(x−4)n

2n converge?

Solution: We will use the Ratio Test again. We are looking for an x such that:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1

lim
n→∞

∣∣∣∣∣∣
(x−4)n+1

2(n+1)

(x−4)n

2n

∣∣∣∣∣∣ < 1

lim
n→∞

∣∣∣∣(x− 4)(x− 4)n

2n+ 2
· 2n

(x− 4)n

∣∣∣∣ < 1

lim
n→∞

∣∣∣∣(x− 4)(x− 4)n(2n)

(x− 4)n(2n+ 2)

∣∣∣∣ < 1

lim
n→∞

∣∣∣∣(x− 4)(2n)

2n+ 2

∣∣∣∣ < 1

lim
n→∞

∣∣∣∣∣2(x− 4)

2+ 2
n

∣∣∣∣∣ < 1

2 · lim
n→∞

∣∣∣∣∣ x− 4

1+ 1
n

∣∣∣∣∣ < 1

2 · |x− 4| < 1

|x− 4| <
1

2

Which is true when
−
1

2
< x− 4 <

1

2

3.5 < x < 4.5

We aren’t done yet, though! We know the series converges for 3.5 < x < 4.5 and diverges
for x < 3.5 and x > 4.5. What about when x = 3.5 and x = 4.5? (These are the cases
where the Ratio Test is indeterminate, because limn→∞ ∣∣∣an+1

an

∣∣∣ = 1.) We need to test each
case. Substituting x = 3.5 into the series yields:

∞∑
n=1

(3.5− 4)n

2n
=

∞∑
n=1

(
−1
2

)n
2n
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=

∞∑
n=1

(−1)n

n · 2n+1

This is an alternating series, so we apply the alternating series test. First, we check that
|an+1| < |an|:

1

(n+ 1) · 2n+2
<

1

n · 2n+1

Which is true for all n > 0. Now we check if limn→∞ |an| = 0:

lim
n→∞ 1

n · 2n+1
=

1∞ = 0

Therefore,
∑∞

n=1
(−1)n

n·2n+1 is convergent and
∑∞

n=1
(x−4)n

2n is convergent for x = 3.5. Now we
test x = 4.5 for convergence:

∞∑
n=1

(4.5− 4)n

2n
=

∞∑
n=1

(
1

2

)n

· 1

2n
=

∞∑
n=1

(
1

2

)n+1
1

n

This series is less than the harmonic series
∑∞

n=1
1
n for all n. We know the harmonic series

diverges, therefore by the direct comparison test,
∑∞

n=1

(
1
2

)n+1 1
n must also diverge. So our

final answer to the original question is that the series is convergent fort 3.5 ≤ x < 4.5.

1.2.1 Radius of Convergence

There are three possible outcomes when testing a power series
∑∞

n=0 cn(x − a)n for con-
vergence:

1. The series only converges for x = a

2. The series converges for all x

3. The series converges if |x − a| < R and diverges for |x − a| > R, where R is some
positive number

We call R the radius of convergence . If we rearrange |x − a| < R, we can see why this is
called a radius (see figure 1.1):

a− R < x < a+ R

When x = a ± R, the series could be convergent or divergent. You will need to test the
endpoints of the windown of convergence to determine if the interval is open or closed.
Thus, there are four possiblities for the interval of convergence:

1. (a− R, a+ R)
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a− R a a+ R

convergence for |x− a| < R

divergence for |x− a| > R

Figure 1.1: R is called the radius of convergence because it is half the width of the window
of convergence

2. [a− R, a+ R)

3. (a− R, a+ R]

4. [a− R, a+ r]

In the example of
∑∞

n=1
(x−4)n

2n (shown above), a = 4 and R = 0.5 and we found that the
power series is convergent for x ∈ [3.5, 4.5).

Example: For what values of x is the Bessel function J0(x) =
∑∞

n=0
(−1)nx2n

22n(n!)2
convergent?

Solution: Because there is a factorial, we will apply the Ratio Test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1

lim
n→∞

∣∣∣∣∣∣
(−1)n+1x2(n+1)

22(n+1)((n+1)!)2

frac(−1)nx2n22n(n!)2

∣∣∣∣∣∣ < 1

lim
n→∞ x2nx222nn!n!

22n22(n = 1)!(n+ 1)!x2n
< 1

lim
n→∞ x2n!n!

22(n+ 1)n!(n+ 1)n!
< 1

lim
n→∞ x2

4(n+ 1)2
= 0 < 1

Because limn→∞ ∣∣∣an+1

an

∣∣∣ = 0 for all x, the Bessel function J0(x) =
∑∞

n=0
(−1)nx2n

22n(n!)2
is conver-

gent for all real values of x and the interval of convergence is (−∞,∞).

Example: Find the radius and interval of convergence for the series
∑∞

n=0
(−3)nxn√

n+1
.

Solution: Again, we apply the ratio test to find values of x such that limn→∞ ∣∣∣an+1

an

∣∣∣ < 1:

lim
n→∞

∣∣∣∣(−3)n+1xn+1

√
n+ 1+ 1

·
√
n+ 1

(−3)nxn

∣∣∣∣ < 1
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lim
n→∞

∣∣∣∣ (−3)x√
n+ 2

·
√
n+ 1

1

∣∣∣∣ < 1

lim
n→∞

∣∣∣∣∣(−3)x

√
n+ 2

n+ 1

∣∣∣∣∣ < 1

3|x| lim
n→∞

√
n+ 2

n+ 1
< 1

3|x| lim
n→∞

√
1+ 2/n

1+ 1/n
= 3|x|(1) < 1

3|x| < 1

|x| <
1

3

Therefore, the radius of convergence is 1
3 . We need to test the endpoints, x = −1

3 and x = 1
3

to determine the interval of convergence. First, we will test if
∑∞

n=0
(−3)nxn√

n+1
when x = −1

3 :

∞∑
n=0

(−3)n
(
−1
3

)n
√
n+ 1

=

∞∑
n=0

1n√
n+ 1

=

∞∑
n=0

1√
n+ 1

This is a p-series such that p < 1, so it is divergent and our original series does not
converge for x = −1

3 . Next we test x = 1
3 :

∞∑
n=0

(−3)n
(
1
3

)n
√
n+ 1

=

∞∑
n=0

(−1)n√
n+ 1

Which is an alternating series that converges by the alternating series test. Therefore, the
interval of convergence for

∑∞
n=0

(−3)nxn√
n+1

is x ∈
(
−1
3 , 13

]
.

Exercise 1

.[This problem was originally presented
as a no-calculator, multiple-choice ques-
tion on the 2012 AP Calculus BC exam.]
What is the radius of convergence of the
series

∑∞
n=0

(x−4)2n

3n ?

Answer on Page 11

Working Space
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Exercise 2

.[This problem was originally presented
as a no-calculator, multiple-choice ques-
tion on the 2012 AP Calculus BC exam.]
A power series is given by x

3 −
x3

5 + x5

7 −
x7

9 + · · · . Write the series in sigma nota-
tion and use the Ratio Test to determine
the interval of convergence.

Answer on Page 11

Working Space

1.3 Calculus with Power Series

You can integrate and differentiate power series. Let f(x) =
∑∞

n=0 cn(x − a)n. Recall that
f(x) is just a very long polynomial and that the derivative of a polynomial xn is n · xn−1.
Then we can state that:

d

dx
f(x) =

d

dx

[
c0 + c1(x− a)1 + c2(x− a)2 + · · ·+ cn(x− a)n

]
f ′(x) = 0+ c1 + 2c2(x− a)1 + · · ·+ ncn(x− a)n−1

f ′(x) =

∞∑
n=1

cn(x− a)n−1

Which is true when x is in the interval of convergence for the series.

Similarly, we know
∫
xn dx = 1

n+1x
n+1. Then we can say that:∫

f(x)dx =

∫ [
c0 + c1(x− a)1 + c2(x− a)2 + · · ·+ cn(x− a)n

]
, dx

∫
f(x)dx = C+ c0(x− a) +

c1
2
(x− a)2 +

c2
3
(x− a)3 + · · · cn

n+ 1
(x− a)n+1

∫
f(x)dx = C+

∞∑
n=0

cn

n+ 1
(x− a)n+1

Where C is the integration constant. Again, this is true when x is in the interval of con-
vergence for the series.
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Example: Express 1
(1−x)2

as a power series by differentiating 1
1−x .

Solution: Recall that 1
1−x =

∑∞
n=0 x

n when |x| < 1.

1

1− x
=

∞∑
n=1

xn

Differentiating both sides:
d

dx

[
1

1− x

]
=

d

dx

∞∑
n=0

xn

(−1) · 1

(1− x)2
· d

dx
(1− x) =

∞∑
n=1

nxn−1

1

(1− x)2
=

∞∑
n=1

nxn−1

Reindexing to begin at n = 0

1

(1− x)2
=

∞∑
n=0

(n+ 1)xn

Because
∑∞

n=0 has a radius of convergence of 1, so does
∑∞

n=0(n + 1)xn. We can confirm
our series makes sense by plotting the partials sums for n = 3, 5, and7 with the original
function (see figure 1.2).

−1 −0.5 0.5 1

2

4

6

8

10

f(x)∑3
n=1 nx

n−1∑5
n=1 nx

n−1∑7
n=1 nx

n−1

Figure 1.2: The function f(x) = 1
(1−x)2

is equal to the power series
∑∞

n=1 nx
n−1

Example: Find a power series representing ln (1+ x).

Solution: We know that d
dx

1
1−x = ln (1− x). Replacing x with −x we see that:

1

1− (−x)
=

1

1+ x
=

∞∑
n=0

(−x)n
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Which converges for |x| < 1. Then we can integrate both sides:∫
1

1+ x
dx =

∫ [ ∞∑
n=0

(−x)n

]
dx

ln (1+ x) =

∫ (
1− x+ x2 − x3 + · · ·

)
dx

ln (1+ x) = C+ x−
x2

2
+

x3

3
+ · · ·+ (−1)n−1x

n

n

ln (1+ x) =

∞∑
n=1

(−1)n−1x
n

n
+ C

When |x| < 1. To find C, substitute x = 0 and solve:

ln (1+ 0) = C+

∞∑
n=1

(−1)n−1 0
n

n
= C+ 0

C = ln 1 = 0

So our final answer is ln (1+ x) =
∑∞

n=1(−1)n−1 xn

n .

Exercise 3

.Find a power series representation for
f(x) = arctan x.

Answer on Page 12

Working Space

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.
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Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 6)

Since this sum has terms to the nth power, we will apply the Root Test, which states a
series is convergent if limn→∞ n

√
|an| < 1.

lim
n→∞ n

√∣∣∣∣(x− 4)2n

3n

∣∣∣∣ < 1

lim
n→∞

∣∣∣∣∣(x− 4)2n/n

3n/n

∣∣∣∣∣ < 1

lim
n→∞

∣∣(x− 4)2
∣∣

3
< 1

(x− 4)2 < 3

|x− 4| <
√
3

Therefore, the radius of convergence is
√
3.

Answer to Exercise 2 (on page 7)

We see that the series is alternating, so we know it involves (−1)n (we will begin indexing
at n = 0). The powers of x are given by x2n+1 and the denominators are given by 2n+ 3.
Therefore, the sum in sigma notation is

∑∞
n=0(−1)n x2n+1

2n+3 . Applying the ratio test, the
series is convergent when:

lim
n→∞

∣∣∣∣∣(−1)n+1x2(n+1)+1

2(n+ 1) + 3

2n+ 3

(−1)nx2n+1

∣∣∣∣∣ < 1

lim
n→∞

∣∣∣∣ x2n+3

2n+ 5

2n+ 3

x2n+1

∣∣∣∣ < 1∣∣∣x2∣∣∣ lim
n→∞ 2n+ 3

2n+ 5
< 1∣∣∣x2∣∣∣ < 1

|x| < 1

11
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So we know that the series is convergent on the open interval x ∈ (−1, 1). We check the
endpoints, x = −1, 1 for convergence.

∞∑
n=0

(−1)n(−1)2n+1

2n+ 3
=

∞∑
n=0

(−1)3n+1

2n+ 3

When x = −1, the series is an alternating series such that |an+1| < |an| and limn→∞ an = 0.
Therefore, the series converges for x = −1.

∞∑
n=1

(−1)n
(1)2n+1

2n+ 3
=

∞∑
n=1

(−1)n

2n+ 3

which is also an alternating series such that |an+1| < |an| and limn→∞ an = 0. Therefore,
the series converges for x = 1 and the interval of convergence is x ∈ [−1, 1], which can
also be written as −1 ≤ x ≤ 1.

Answer to Exercise 3 (on page 9)

Recall that d
dx arctan x = 1

1+x2
. Replacing x with −x2, we see that 1

1+x2
= 1

1−(−x2)
=∑∞

n=0

[
−x2

]n
=

∑∞
n=0(−1)nx2n. Thenwe can also say that arctan x =

∫
1

1+x2
dx =

∫ [
sum∞

n=0(−1)nx2n
]
dx.

Evaluating the integral,
∫ [

sum∞
n=0(−1)nx2n

]
dx =

∑∞
n=0(−1)n

∫
x2n dx = C+

∑∞
n=0

(−1)nx2n+1

2n+1 .
Knowing that arctan 0 = 0, we find that C = 0 and arctan x =

∑∞
n=0

(−1)nx2n+1

2n+1 .
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