
Chapter 1

Polar Coordinates

We have already seen how to plot a function with (x, y) coordinates. For every x that we
put into a function, it returns a y. These pairs of coordinates tell us where on the xy-plane
to graph the function. This coordinate system, where x and y are oriented horizontally
and vertically, is called the Cartesian coordinate system. It can be used to describe 2D
space, but it is not the only way.
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Figure 1.1: The point (1, 2) is
√
5 units from the origin and approximately 1.107 radians

counterclockwise from horizontal

Instead of thinking about horizontal and vertical position, we could think about distance
from the origin and rotation about the origin. Take the Cartesian coordinate point (1, 2)
(see figure 1.1). How far is (1, 2) from the origin, (0, 0)? We can create a right triangle,
where the legs are parallel to the x and y axes. Then the leg lengths are 1 and 2, and
we can use the Pythagorean theorem to find the length of the hypotenuse (which is the
distance from the origin to the point):

c2 = a2 + b2

c2 = 12 + 22 = 1+ 4 = 5

c =
√
5

Therefore, the Cartesian point (1, 2) is
√
5 units from the origin. This is not enough to

find our point: there are infinite points that are
√
5 from the origin (see 1.2). To identify a

particular point that is a distance of
√
5 from the origin, we also need an angle of rotation.

By convention, angles are measured from the positive x- axis. This means points on the
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positive x-axis have an angle of θ = 0, points on the positive y-axis have an angle of θ = π
2 ,

and so on.
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Figure 1.2: There are infinite points
√
5 from the origin, represented by the circle with a

radius of
√
5 centered about the origin

We can use trigonometry to find the appropriate angle of rotation for our Cartesian point.
There are many ways to do this, but using arctan is the most straightforward. Recall that:

tan θ =
opposite

adjacent

That is, for a given angle in a right triangle, the tangent of that angle is given by the length
of the opposite leg divided by the adjacent leg. In our case, the opposite leg is the vertical
distance (y-value of the Cartesian point) and the adjacent leg is the horizontal distance
(x-value of the Cartesian point), which means”

tan θ =
2

1

θ = arctan 2 ≈ 1.107 radians

1.1 Plotting Polar Coordinate Points

How do we plot polar coordinate points? Begin by locating the angle given by the second
coordinate (remember, the angle is measured counterclockwise from the horizontal). Your
point will lie somewhere on this line. Then, move outwards along the angle by the radius
given by the first coordinate.

Example: plot the polar coordinate point (2, π3 ).

Solution: begin by locating θ = π
3 (see figure 1.3)
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Figure 1.3: θ = π
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Figure 1.4: (2, π3 )



4 Chapter 1. POLAR COORDINATES

Then, move your finger or pencil along the line θ = π
3 until you reach r = 2 (see figure

1.4).

Exercise 1

.Plot the following polar coordinate points
on the provided polar axis (hints: nega-
tive angles are taken counterclockwise):

1. (1, π)

2. (1.5, π2 )

3. (1.5,−π
6 )

4. (2, 3π4 )
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Answer on Page 15

Working Space

1.2 Equivalent Points

Unlike the Cartesian coordinate system, two different coordinates may lie at the same lo-
cation. Consider the points (1, π4 ) and (−1, 5π4 ) (see figure 1.5). When a radius is negative,
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you move backwards back over the origin, like a mirror image.

1.3 Changing coordinate systems

1.3.1 Cartesian to Polar

From the example above, you should see that a given Cartesian coordinate, (x, y), can also
be expressed as a polar coordinate, (r, θ), where r is the distance from the origin and θ is
the angle of rotation from the horizontal. (Note: polar functions are generally given as r
defined in terms of θ, which means the dependent variable is listed first in the coordinate
pair, unlike Cartesian coodinates.) Additionally,

r =
√
x2 + y2

θ = arctan y

x

Example: Express the Cartesian point (−3, 4) in polar coordinates.

Solution: Taking x = −3 and y = 4, we find that:

r =
√

(−3)2 + 42 =
√
9+ 16 =

√
25 = 5

We follow the convention of only taking the positive solution to the square root. Finding
θ:

θ = arctan 4

−3

When you evaluate the arctan with a calculator, you are likely to get back θ = −0.928.
Recall that tanθ = tan θ± nπ, where n is an integer. We know our Cartesian point, (−3, 4),
is in the II quadrant, while the angle −0.928 radians would fall in the IV quadrant. So,
clearly, −0.928 radians is not correct. Most calculators restrict the output of arctan to
angles between −π

2 and π
2 , because there are actually multiple angles where tan θ = − 4

3 .
Since tan θ = tan θ± nπ, we also know that:

arctan−
4

3
= −0.928± nπ

So another possible θ is −0.928+ π ≈ 2.214, which does fall in the appropriate quadrant.
Then the polar coordinates (5, 2.214) are the same as the Cartesian coordinates (−3, 4).
Note: it is standard practice to express angles in radians, and not degrees, when using
polar coordinates.
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Figure 1.5: The polar coordinates points (1, π4 ) and (−1, 5π4 ) are the same location on a
polar axis
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1.3.2 Polar to Cartesian

We can also leverage our knowledge of right triangles to convert polar coordinates to
Cartesian coordinates. Take the polar coordinate (2, π4 ) (see figure 1.6). We can draw
a right triangle with legs parallel to the x and y axes (not shown in the figure) and a
hypotenuse that goes from the origin to the polar coordinate (2, π4 ).

(r, θ) = (2, π4 )

θ

r

y
=

rsin
θ

x = r cos θ
(0, 0)

Figure 1.6: To convert from polar to Cartesian coordinates, use the identities x = r cos θ
and y = r sin θ

Recall from trigonometry that:

sin θ =
opposite leg
hypotenuse

We know that the hypotenuse of this triangle has a length of r. The opposite leg is vertical
and is the same length as the distance of the polar coordinate from the x-axis. Therefore,
the length of the vertical leg represents the y value of that same polar coordinate if it were
expressed in Cartesian coordinates. Then we can say that:

sin θ =
y

r

And therefore:
y = r sin θ

By a similar process, we also see that:

x = r cos θ

This is easy to visualize and understand for 0 ≤ θ ≤ π
2 , but it also holds for other values

of θ.

Example: Express the polar coordinate ( 32 ,
2π
3 ) in Cartesian coordinates.
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Solution: From the polar coordinate, we see that θ = 2π
3 and r = 3

2 . Therefore:

x = r cos θ =
3

2
· cos 2π

3
=

3

2
·−1

2
= −

3

4

y = r sin θ =
3

2
· sin 2π

3
=

3

2
·
√
3

2
=

3
√
3

4

And the Cartesian coordinate (− 3
4 ,

3
√
3

4 ) has the same location as the given polar coordi-
nate.

Exercise 2

.Convert the following polar coordinates
to Cartesian coordinates.

1. (2, 3π2 )

2. (
√
2, 3π4 )

3. (3,−π
4 )

4. (−3,−π
3 )

5. (2,−π
2 )

Answer on Page 15

Working Space
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Exercise 3

.Convert the following Cartesian coordi-
nates to polar coordinates. Restrict θ to
0 ≤ θ < 2π.

1. (−4, 4)

2. (3, 3
√
3)

3. (
√
3,−1)

4. (−6, 0)

5. (−2,−2)

Answer on Page 15

Working Space

1.4 Circles in Polar Coordinates

Many conic sections, including circles, are simpler to express as polar functions than as
Cartesian functions. Consider a circle with a radius of 2 centered about the origin. The
polar function for this is r = 2 for all θ. Let’s write a Cartesian function for the same circle.

We know that for every point on the circle, the distance to the origin is 2. Then, by the
Pythagorean theorem,

r2 = x2 + y2

(see figure 1.7)

We can solve this equation for y, given that r = 2 (in this case):

y = ±
√
22 − x2

Notice this is really two equations, y =
√
22 − x2 and y = −

√
22 − x2. This is more complex

than the polar equation, r = 2.

As seen above, the equation of a circle with radius R centered on the origin is simply r = R

in polar coordinates. What if we want a circle centered somewhere else? Polar coordinates
are best when a circle is bisected by the x or y axis. Consider the polar equation r = 3 sin θ.
Let’s use a table to find some points and plot the function:
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Figure 1.7: All (x, y) pairs on the circle are the same distance from the origin

θ r = 3 sin θ
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Here is how those points look plotted (see figures 1.8 and 1.9):

So the polar equation r = 3 sin θ gives a circle with radius 3
2 centered at (0, 32).

Example: Describe the graph of r = cos θ. Feel free to make a rough plot on the blank
polar axis below:
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Figure 1.8: Several points for r = 3 sin θ plotted on Cartesian and polar coordinate systems
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Figure 1.9: r = 3 sin θ plotted on a polar coordinate system
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Solution: This plot will look like a circle of radius 0.5 centered at (0.5, 0) (in polar coor-
dinates).
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Exercise 4

.Sketch the following polar functions on
the provided polar axis for 0 ≤ θ < 2π:

1. r = 3

2. θ = π

3. r = 2 cos θ
2

4. r = −4 sin θ

5. r = θ
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Answer on Page 16

Working Space

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.
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Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 4)
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Answer to Exercise 2 (on page 8)

1. (0,−2). x = 2 · cos 3π
2 = 2 · 0 = 0 and y = 2 · sin 3π

2 = 2 ·−1 = −2.

2. (−1, 1). x =
√
2 · cos 3π

4 =
√
2 ·−

√
2
2 = 2

2 = −1 and y =
√
2 · sin 3π

4 =
√
2 ·

√
2
2 = 2

2 = 1.

3. ( 3
√
2

2 ,− 3
√
2

2 ). x = 3 · cos−π
4 = 3 ·

√
2
2 = 3

√
2

2 and y = 3 · sin−π
4 = 3 ·−

√
2
2 = − 3

√
2

2 .

4. (− 3
2 ,−

3
√
3

2 ). x = (−3) ·cos π
3 = (−3) · 12 = − 3

2 and y = (−3) ·sin π
3 = (−3) ·

√
3
2 = − 3

√
3

2 .

5. (0,−2). x = 2 · cos−pi
2 = 2 · 0 = 0 and y = 2 · sin−π

2 = 2 ·−1 = −2.

Answer to Exercise 3 (on page 9)
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1. (4
√
2, 3π4 ). r =

√
x2 + y2 =

√
32 = 4

√
2. arctan y

x = arctan 4
−4 = arctan−1 = −π

4 +nπ.
We take θ = 3π

4 to satisfy the domain restriction and be in the correct quadrant.

2. (6, π3 ). r =
√

32 +
(
3
√
3
)2

=
√
9+ 27 =

√
36 = 6. arctan 3

√
3

3 = arctan
√
3 = π

3 + nπ.
We take θ = π

3 to satisfy the domain restriction and be in the correct quadrant.

3. (2, 11π6 ). r =
√√

3
2
+ (−1)2 =

√
3+ 1 = 2. arctan −1√

3
= −π

6 + nπ. We take θ = 11π
6 to

satisfy the domain restriction and have the point in the correct quadrant.

4. (6, π). r =
√

(−6)2 + 02 = 6. arctan 0
−6 = π + nπ. We take θ = π to satisfy the

domain restriction.

5. (2
√
2, 5π4 ). r =

√
(−2)2 + (−2)2 =

√
8 = 2

√
2. arctan −2

−2 = arctan 1 = π
4 + nπ. We

take θ = 5π
4 to satisfy the domain restriction and be in the correct quadrant.

Answer to Exercise ?? (on page 13)

1. r = 3
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2. θ = π Because r includes all real numbers, negative r is possible and the line θ = π

extends in both directions
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3. r = 2 cos θ
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4. r = −4 sin θ
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5. r = θ (The spiral continues but is beyond the boundary of the graph)
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