
Chapter 1

Calculus with Polar Coordinates

We’ve been working in Cartesian coordinates, which are rectangular, with x representing
the horizontal position and y representing the vertical position. Another way to represent
a position in 2D space is with polar coordinates. In this coordinate system, the first
number and dependent variable is r and represents how far the point is from the origin.
The second number is θ and represents the degrees of rotation from the the x axis (see
figure ??).
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Figure 1.1: Polar coordinates give a degree of rotation, θ, and a distance from the origin,
r, in the form (r, θ)

1.1 Derivatives of Polar Functions

Consider the cardioid r = 2 + sin θ (see figure ??). What is the slope of the line tangent
to the curve at θ = π

2 ?

From a visual inspection, we can guess that the slope of the tangent line is zero. Let’s
prove this mathematically:

First, recall that to convert polar coordinates to Cartesian coordinates, we can use the
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Figure 1.2: r = 2+ sin θ

trigonometric identities:
x = r cos θ
y = r sin θ

So we can write the parametric equation:

x = [2+ sin θ] cos θ

y = [2+ sin θ] sin θ

Recall from parametric equations that we can use implicit differentiation to find dy
dx :

dy

dx
=

dy
dθ
dx
dθ

Finding dy
dθ and dx

dθ :

dy

dθ
=

d

dθ

(
2 sin θ+ sin2 θ

)
= 2 cos θ+ 2 sin θ cos θ

dx

dθ
=

d

dθ
(2 cos θ+ sin θ cos θ) = cos2 θ− sin2 θ− 2 sin θ

Substituting θ = π
2 , we find that:

dy

dθ
= 2(0) + 2(1)(0) = 0
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dx

dθ
= (0)2 − (1)2 − 2(1) = −3

And therefore,
dy

dx
=

0

−3
= 0

Which is the result we expected from examining the graph of r = 2+ sin θ.

So, in general for polar equations,

Tangent to a Polar Function

For a polar function, r = f(θ), the slope of a tangent line is given by:

dy

dx
=

dy/dθ

dx/dθ

Where y = r · sin θ and x = r · cos θ

Exercise 1

.[This problem was originally presented
as a no-calculator, multiple-choice ques-
tion on the 2012 AP Calculus BC exam.]
What is the slope of the line tangent to
the polar curve r = 1+ 2 sin θ at θ = 0?

Answer on Page 15

Working Space
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Exercise 2

.Find the slope of the tangent line to the
given polar curve at the value of θ speci-
fied. Use this to write an equation for the
tangent line in Cartesian coordinates.

1. r = 2
3 cos θ, θ = π

6

2. r = 1
2θ , θ = π

2

3. r = 2+ 3 cos θ, θ = 2π
3

Answer on Page 15

Working Space
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1.2 Integrals of Polar Functions

Similar to Cartesian functions, an integral of a polar function tells us the area within the
function. We say ”within” as opposed to ”under” because a polar function describes how
far from the origin the graph is based on the angle. Consider the graph of r = 2 sin θ

(figure 1.3). Geometrically, we expect the area inside the curve to be πr2 = π. However,
this is not the result we get from directly integrating the function (we only integrate from
θ = 0 to θ = π because the circle is complete when θ reaches π):∫π

0

2 sin θdθ = −2 cos θ|θ=π
θ=0

= −2 [cosπ− cos 0] = −2 [−1− 1] = 4 6= π
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Figure 1.3: The graph of r = 2 sin θ is a circle of radius 1 centered at (1, π2 )

Clearly something else is happening here. We can just take the integral of a Cartesian
function because the area of a rectangle is the base times the height. When integrating
Cartesian functions, the base is given by the dx and the height by the function, f(x). In
polar coordinates, the integral sweeps across a θ interval, making a wedge, not a rectangle.

Let us consider a generic polar function, shown in figure 1.4

Suppose we are interested in a specific region, bounded by a ≤ θ ≤ b (see figure 1.5).

We can divide the region into many small sectors. Then each small sector has a central
angle ∆θ and a radius r(θ∗i ), where θi−1 < θ∗i < θi (see figure 1.6).

What is the area of the ith sector? Recall from the chapter on circles that the area of a
sector with angle θ and length r is A = 1

2r
2θ. Substituting, we see the area of the ith sector
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is:
Ai =

1

2
[r(θ∗i )]

2 dθ

And therefore the total area of the whole sector from θ = a to θ = b is the limit as the
number of sectors approaches infinity of sum of the areas of all the small sectors:

A = lim
n→∞

n∑
i=1

1

2
[r(θ∗i )]

2∆θ

Does this look familiar? It’s the definition of an integral!

lim
n→∞

n∑
i=1

1

2
[r(θ∗i )]

2∆θ =

∫b
a

1

2
[r(θ)]2 dθ

Area of a Polar Function
The area of a polar function is given by the integral∫b

a

1

2
r2 dθ

Where r is a function of θ.

We can check this with the example from the beginning of the section. Recall that the
polar function r = 2 sin θ graphs a circle with a radius of 1. Therefore, we expect the area
enclosed by the graph of r = 2 sin θ from θ = 0 to θ = π to be π:

A =
1

2

∫π
0

[2 sin θ]2 dθ

A = 2

∫π
0

sin2 θdθ = 2

∫π
0

[
1− cos 2θ

2

]
dθ

A =

∫π
0

[1− cos 2θ] dθ =

[
θ−

1

2
sin 2θ

]θ=π

θ=0

A = [π− 0] − [0− 0] = π

Which is the expected result, confirming our formula for the area within a polar function.

Example: The graph of r = 3 sin 2θ is shown below. What is the total area enclosed by
the graph?

Solution: Since each lobe is symmetric to the others, we can find the area of one lobe and
multiply it by four. To find the area of one lobe, we need to determine an interval for θ
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Figure 1.7: r = 3 sin 2θ

that defines one lobe. You can imagine each lobe being draw out from the center and then
back in. So we will find where r = 0:

0 = 3 sin 2θ

sin 2θ = 0

2θ = nπ

θ =
nπ

2

Taking the first 2 solutions, θ = 0 and θ = π
2 , as our limits of integration, we see that the

area of one lobe is:

Alobe =
1

2

∫π/2
0

[3 sin 2θ]2 dθ

Alobe =
9

2

∫π/2
0

sin2 2θdθ

Applying the half-angle formula sin2 θ = 1−cos 2θ
2 , we see that:

Alobe =
9

2

∫π/2
0

1− cos 4θ
2

dθ =
9

4

∫π/2
0

1− cos 4θdθ

=
9

4

[
θ−

1

4
sin 4θ

]θ=π/2

θ=0

=
9

4

(π
2
− 0

)
−

9

4

(
1

4

)
(sin 2π− sin 0)
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=
9π

8
−

9

16
(0) =

9π

8

Since the area of one lobe is 9π
8 , the area of all four lobes is 9π

2 .

1.2.1 Area between polar curves

Consider the circle r = 6 sin θ and the cardioid r = 2 + 2 sin θ. How can we find the area
that lies inside the circle but outside the cardioid (see figure 1.8)? First, let’s find where
these curves intersect. This will determine the limits of any integrals we take.

6 sin θ = 2+ 2 sin θ

3 sin θ = 1 = sin θ

2 sin θ = 1
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Figure 1.8: The area inside r = 6 sin θ and outside of r = 2+ 2 sin θ is highlighted

Recall that for Cartesian functions, to find the area between two curves we subtract the area
under the lower curve from the total area under the higher curve. In polar coordinates, we
want to subtract the area in the inner curve from the total area in the outer curve. In this
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case, the outer curve is r = 6 sin θ and the inner curve is r = 2+ 2 sin θ. We have already
found our limits of integration (π6 ≤ θ ≤ 5π

6 ), so we set up and evaluate our integral:

Abetween =
1

2

∫ 5π/6
π/6

[4 sin θ]2 dθ−
1

2

∫ 5π/6
π/6

[2+ 2 sin θ]2 dθ

=
1

2

∫ 5π/6
π/6

[
16sin2θ− 4− 8 sin θ− 4 sin2 θ

]
dθ

=

∫ 5π/6
π/6

[
6 sin2 θ− 4 sin θ− 2

]
dθ

=

∫ 5π/6
π/6

[3 (1− cos 2θ) − 4 sin θ− 2] dθ

=

∫ 5π/6
π/6

[1− 3 cos 2θ− 4 sin θ] dθ

=

[
θ−

3

2
sin 2θ+ 4 cos θ

]θ=5π/6

θ=π/6

=

[
5π

6
−

π

6

]
−

[
3

2
sin

(
2 · 5π

6

)
−

3

2
sin

(
2 · π

6

)]
+

[
4 cos 5π

6
− 4 cos π

6

]

=
4π

6
−

[
3

2
·−

√
3

2
−

3

2
·
√
3

2

]
+

[
4 ·−

√
3

2
− 4 ·

√
3

2

]

=
2π

3
+

3
√
3

2
− 4

√
3 =

2π

3
+

3
√
3− 8

√
3

2
=

2π

3
−

5
√
3

2

(Note: because these polar functions are symmetric about the y-axis, we could have also
taken the integral from θ = π

6 to θ = π
2 and doubled the result. We leave it as an exercise

for the student to show this works.)
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Exercise 3

.[This question was originally presented
as a multiple-choice, calculator- allowed
problem on the 2012 APCalculus BC exam.]
The figure below shows the graphs of
polar curves r = 2 cos 3θ and r = 2. What
is the sum of the areas of the shaded re-
gions to three decimal places?
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Answer on Page 17

Working Space
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Exercise 4

.Find the area of the region bounded by
the given curve and angles.

1. r = eθ/2, π/4 ≤ θ ≤ π/2

2. r = 2 sin θ+ cos 2θ, 0 ≤ θ ≤ π

3. r = 4+ 3 sin θ, −π/2 ≤ θ ≤ π/2

Answer on Page 17

Working Space
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Exercise 5

.Find the area of the region that lies be-
tween the curves r = 4 sin θ and r =
2 cos θ. A graph is shown below.

0

π
6

π
3

π
22π

3

5π
6

π

7π
6

4π
3 3π

2

5π
3

11π
6

0 1 2 3 4

Answer on Page 18

Working Space

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.

https://kontinua.org/
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org/) for more details.
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Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 3)

Recall that for a polar function, dy
dx =

dy
dθ
dx
dθ

. We also know that x = r cos θ, which equals
[1+ 2 sin θ] · cos θ = cos θ+2 sin θ cos θ in this case. And we know that y = r · sin θ, which
equals [1+ 2 sin θ] · sin θ = sin θ+ 2 sin2 θ in this case. Taking the derivative with respect
to θ:

dy

dθ
=

d

dθ

[
sin θ+ 2 sin2 θ

]
dy

dθ
= cos θ+ 4 sin θ cos θ

And

dx

dθ
=

d

dθ
[cos θ+ 2 sin θ cos θ]

dx

dθ
= − sin θ− 2 sin2 θ+ 2 cos2 θ

Evaluating each at θ = 0:

dy

dθ
= cos 0+ 4 sin 0 cos 0 = 1+ 0 = 1

dx

dθ
= − sin 0− 2 sin2 0+ 2 cos2 0 = 0− 0+ 2 = 2

And therefore dr
dθ = dy/dθ

dx/dθ
= 1

2

Answer to Exercise 2 (on page 4)

1. Answer: slope = −
√
3
3 and an equation for the tangent line is y−

√
3
6 = −

√
3
3

(
x− 1

2

)
.

Explanation: dy
dx = dy/dθ

dx/dθ
=

d
dθ

r·sinθ
d
dθ

r·cos θ =
d
dθ

(
2
3
cos θ sin θ

)
d
dθ

(
2
3
cos2 θ

) =
2
3

(
cos2 θ−sin2 θ

)
2
3
(−2 cos θ sin θ)

= sin2 θ−cos2 θ
2 cos θ sin θ

15
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Substituting θ = π
6 :

dy
dx = sin2 π/6−cos2 π/6

2 cosπ/6 sinπ/6
=

(1/2)2−
(√

3/2
)2

2
(√

3/2
)
(1/2)

= 1/4−3/4√
3/2

= −1/2√
3/2

= −1
2 · 2√

3
=

−
√
3
3

To write an equation for a line, we need a Cartesian point. First, we find r at θ = π
6 :

r = 2
3 cos

(
π
6

)
= 2

3 ·
√
3
2 =

√
3
3 . So the point the tangent passes through is the polar

coordinate
(√

3
3 , π6

)
. We convert this to Cartesian coordinates: x = r cos θ =

√
3
3 ·

cos
(
π
6

)
=

√
3
3 ·

√
3
2 = 3

6 = 1
2 And y = r sin θ =

√
3
3 · sin

(
π
6

)
=

√
3
3 · 1

2 =
√
3
6

Then an equation for a line with slope −
√
3
3 that passes through Cartesian coordinate(

1
2 ,

√
3
6

)
is: y−

√
3
6 = −

√
3
3

(
x− 1

2

)
2. Answer: slope = 2

π and an equation for the tangent line is y− 1
π = 2

πx

Explanation: dy
dx = dy/dθ

dx/dθ
=

d
dθ

(
sin θ
2θ

)
d
dθ

(
cos θ
2θ

) =
θ cos θ−sin θ

2θ2

−θ sin θ+cos θ
2θ2

= sin θ−θ cos θ
θ sin θ+cos θ .

Substituting θ = π
2 :

dy
dx =

sin π
2
−
(
π
2

)
cos π

2(
π
2

)
sin π

2
+cos π

2

=
1−

(
π
2

)
·0(

π
2

)
·1+0

= 1
π
2
= 2

π

To write an equation for a line, we need a Cartesian point. First, we find r at θ = π
2 :

r = 1
2θ = 1

2π
2
= 1

π . So the tangent line passes through the point with polar coordinates(
1
π ,

π
2

)
. We convert this to Cartesian coordinates: x = r · cos θ = 1

π · cos π
2 = 1

π · 0 = 0

and y = r · sin θ = 1
π · sin π

2 = 1
π · 1 = 1

π .
Then an equation for a line with slope 2

π that passes through Cartesian coordinate(
0, 1

π

)
is y− 1

π = 2
πx

3. Answer: slope= − 5√
3
and an equation for the tangent line is y−

√
3
4 =

(
− 5√

3

) (
x+ 1

4

)
.

Explanation: dy
dx = dy/dθ

dx/dθ
=

d
dθ

[(2+3 cos θ)·sin θ]
d
dθ

[(2+3 cos θ)·cos θ] =
cos θ(2+3 cos θ)−3 sin2 θ

(2+3 cos θ)·(− sin θ)+cos θ(−3 sin θ) =
cos θ(2+3 cos θ)−3 sin2 θ

−2 sin θ(1+3 cos θ) .

Substituting θ = 2π
3 : dy

dx =
cos 2π

3

(
2+3 cos 2π

3

)
−3 sin2 2π

3

−2 sin 2π
3

(
1+3 cos 2π

3

) =

(
− 1

2

)(
2+3

(
− 1

2

))
−3

(√
3

2

)2

−2
(√

3
2

)(
1+3

(
− 1

2

)) =(
− 1

2

)(
2− 3

2

)
−3

(
3
4

)
−
√
3
(
1− 3

2

) =

(
− 1

2

)(
1
2

)
− 9

4

−
√
3
(
− 1

2

) =
− 1

4
− 9

4√
3

2

= −
10
4√
3

2

= − 10·2
4·
√
3
= − 5√

3

To write an equation for a tangent line, we need a Cartesian point. First, we find
r at θ = 2π

3 : r = 2 + 3 cos 2π
3 = 2 + 3

(
−1
2

)
= 2 − 3

2 = 1
2 . So the tangent line

passes through polar coordinate
(
1
2 ,

2π
3

)
. We convert this to Cartesian coordinates:

x = r cos θ = 1
2 cos

2π
3 = 1

2

(
− 1

2

)
= − 1

4 and y = r sin θ = 1
2 sin

2π
3 = 1

2

(√
3
2

)
=

√
3
4 .

Then an equation with slope −
√
5
3 that passes through the Cartesian coordinate(

− 1
4 ,

√
3
4

)
is: y−

√
3
4 =

(
− 5√

3

) (
x+ 1

4

)
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Answer to Exercise 3 (on page 11)

We know the area of the circle is πr2 = π(2)2 = 4π. To find the area of the shaded regions,
we need to subtract the area of the trefoil from the area of the circle. The trefoil has three
equal areas. We can find the area of the leaf that is formed on the interval π

6 ≤ θ ≤ π
2 (see

figure below)

π

7π
6

4π
3 3π

2

012

The area of one leaf of the trefoil is given by 1
2

∫π/2
π/6

[2 cos 3θ]2 dθ. Using a calculator, the
area of one leaf is ≈ 1.0472. The area of the circle is given by πr2 = π(2)2 ≈ 12.5664. Then
the area of the shaded region is the area of the circle minus three times the area of a single
leaf: 12.5664− 3 · 1.0472 = 9.4248 ≈ 9.425.

Answer to Exercise 4 (on page 12)

1. Answer: A = eπ/8
(
eπ/8 − 1

)
Explanation: A = 1

2

∫π/2
π/4

[
eθ/2

]
, dθ = 1

2 ·2
[
eθ/2

]θ=π/2

θ=π/4
= eπ/4−eπ/8 = eπ/8

(
eπ/8 − 1

)
≈

0.712

2. Answer: the area is 1
2

[
eπ/2 − eπ/4

]
≈ 1.309

Explanation: A = 1
2

∫π/2
π/4

[
eθ/2

]2
dθ = 1

2

∫π/2
π/4

eθ dθ = 1
2e

θ|
θ=π/2

θ=π/4
= 1

2

[
eπ/2 − eπ/4

]
≈

1.309

3. Answer: A = 41
4 π ≈ 32.201

Explanation: A = 1
2

∫π/2
−π/2

[4+ 3 sin θ]2 dθ = 1
2

∫π/2
−π/2

[
16+ 24 sin θ+ 9 sin2 θ

]
dθ =
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∫π/2
−π/2

8 dθ + 12
∫π/2
−π/2

sin θdθ + 9
2

∫π/2
−π/2

sin2 θdθ = [8θ]
θ=π/2

θ=−π/2
+ 12 [− cos θ]θ=π/2

θ=−π/2
+

9
2

∫π/2
−π/2

1−cos 2θ
2 dθ = 8

[(
π
2

)
−
(
−π
2

)]
+12

[(
− cos π

2

)
−
(
− cos −π

2

)]
+ 9

4

∫π/2
−π/2

1 dθ− 9
4

∫π/2
−π/2

cos 2θdθ =

8π+12 (0− 0)+ 9
4 [θ]

θ=π/2

θ=−π/2
− 9

4

[
1
2 sin 2θ

]θ=π/2

θ=−π/2
= 8π+ 9

4

[(
π
2

)
−
(
−π

2

)]
− 9

8

[
sin

(
2 · π

2

)
− sin

(
2 ·−π

2

)]
=

8π+ 9
4π− 9

8 [sin (π) − sin (−π)] = 41
4 π− 9

8 [0− (−0)] = 41
4 π ≈ 32.201

Answer to Exercise 5 (on page 13)

Answer: The area between the circles is approximately 0.96174.

Explanation: Examining the graph, we see that the region we’re interested in is the area
within r = 4 sin θ from θ = 0 to θ = θi plus the area within r = 2 cos θ from θ = θi to
θ = π

2 , where θi is the angle where the two curves intersect. Examine the graph below to
see why this is true.
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Setting the equations equal to each other to find θi:

4 sin θi = 2 cos θi

sin θi
cos θi

= tan θi =
2

4

θi = arctan 1/2 ≈ 0.464



19

Then the total area between the circles is:

1

2

∫θi
0

[4 sin θ]2 dθ+
1

2

∫π/2
θi

[2 cos θ]2 dθ

= 8

∫θi
0

sin2 θdθ+ 2

∫π/2
θi

cos2 θdθ

= 8

∫θi
0

1

2
(1− cos 2θ) dθ+ 2

∫π/2
θi

1

2
(1+ cos 2θ) dθ

= 4

∫θi
0

(1− cos 2θ) dθ+

∫π/2
θi

(1+ cos 2θ) dθ

= 4

[
θ−

1

2
sin 2θ

]θ=θi

θ=0

+

[
θ+

1

2
sin 2θ

]θ=π/2

θ=θi

= 4

[
(θi − 0) −

1

2
(sin 2θi − sin 0)

]
+

[(π
2
− θi

)
+

1

2
(sinπ− sin 2θi)

]
= 4

[
θi −

1

2
sin 2θi

]
+

π

2
− θi −

1

2
sin 2θi

= 4θi − 2 sin 2θi +
π

2
− θi −

1

2
sin 2θi = 3θi −

5

2
sin 2θi +

π

2

Substituting θi = arctan 1/2 ≈ 0.464:

= 3(0.464) −
5

2
sin 0.927+

π

2
≈ 0.96174



20 Chapter A. ANSWERS TO EXERCISES



Index

polar coordinates, 1

21


	Calculus with Polar Coordinates
	Derivatives of Polar Functions
	Integrals of Polar Functions
	Area between polar curves


	Answers to Exercises
	Index

