CHAPTER |

Data Tables and pandas

Much of the data that you will encounter in your career will come to you as a table. Some
of these tables are spreadsheets, some are in relational databases, some will come to you
as CSV files.

Typically each column will represent an attribute (like height or acreage) and each row
will represent an entity (like a person or a farm). You might get a table like this:

property_id ‘bedrooms ‘square_meters ‘estimated_value
7927 3 921.4 $ 294,393
9329 2 829.1 $ 207,420

Typically, one of the columns is guaranteed to be unique. We call this the primary key. In
this table, property_id is the primary key: every property has one, and no two properties
have the same property_id.

1.1 Data types

Each column in a table has a type, and these usually correspond pretty nicely with types
in Python.

Here are some common datatypes:

Type Python type Example
Integer int 910393
Float float -23.19
String string 'Fred'
Boolean bool False
Date datetime.date 2019-12-04
Timestamps | datetime.datetime | 2022-06-10T14:05:22Z

Sometimes it is OK to have values missing. For example, if you had a table of data about
employees, maybe one of the columns would be retirement, a date that tells you when
the person retired. People who had not yet retired would have no value in this column.
We would say that they have null for retirement.

Sometimes there are constraints on what values can appear in the column. For example,
if the column were height, it would make no sense to have a negative value.

2 Chapter 1. DATA TABLES AND PANDAS

Sometimes a column can only be one of a few values. For example, if you ran a bike rental
s

shop, each bicycle’s status would be “available”, “rented”, or “broken”. Any other values
in that column would not be allowed. We often call these columns categorical.

1.2 pandas

The Python community works with tables of data a lot, so it created the pandas library
for reading, writing, and manipulating tables of data.

When working with tables, you sometimes need to go through them row-by-row. How-
ever, for large datasets, this is very slow. pandas makes it easy (and very fast) to say
things like “Delete every row that doesn’t have a value for height” instead of requiring
you to step through the whole table.

In pandas, there are two datatypes that you use a lot:

e a Series is a single column of data.

e a DataFrame is a table of data: it has a Series for each column.

In the digital resources, you will fined bikes.csv. If you look at it in a text editor, it will
start like this:

bike_id,brand,size,purchase_price,purchase_date,status
5636248,GT,57,277.99,1986-09-07 ,available
4156134,Giant,56,201.52,2005-01-09,rented

7971254 ,Cannondale,54,292.25,1978-02-28,available
3600023, Canyon,57,197.62,2007-02-15,broken

The first line is a header and tells you the name of each column. Then the values are
separated by commas. (Thus the name: CSV stands for “Comma Separated Values”.)

1.3 Reading a CSV with pandas

Let’s make a program that reads bikes.csv into a pandas dataframe. Create a file called
report.py in the same folder as bikes.csv.

First, we will read in the csv file. pandas has one Series that acts as the primary key; it
calls this one the index. When reading in the file, we will tell it to use the bike_id as the

index series.

If you ask a dataframe for its shape, it returns a tuple containing the number of rows and

Section 1.4 LOOKING AT A SERIES 3

the number of columns. To confirm that we have actually read the data in, let’s print those
numbers. Add these lines to report.py:

import pandas as pd

Read the CSV and create a dataframe
df = pd.read_csv('bikes.csv', index_col="bike_id")

Show the shape of the dataframe
(row_count, col_count) = df.shape
print (£"#*x Basics **x")

print (f"Bikes: {row_count:,}")
print (f"Columns: {col_count}")

Build it and run it. You should see something like this:

*%x% Basics **x
Bikes: 998
Columns: 5

Note that your table actually had 6 columns. The index series is not included in the shape.

1.4 Looking at a Series

Let’s get the lowest, the highest, and the mean purchase price of the bikes. The purchase
price is a series, and you can ask the dataframe for it. Add these lines to the end of your
program

Purchase price stats

print ("\n*** Purchase Price *xx")
series = df["purchase_price"]
print (f"Lowest:{series.min()}")
print (f"Highest:{series.max()}")
print (f"Mean:{series.mean():.2f}")

Now when you run it, you will see a few additional lines:

x Purchase Price **x
Lowest:107.37
Highest:377.7
Mean:249.01

4 Chapter 1. DATA TABLES AND PANDAS

What are all the brands of the bikes? Add a few more lines to your program that shows
how many of each brand:

Brand stats

print ("\n*** Brands x**")

series = df ["brand"]

series_counts = series.value_counts()
print (f"{series_counts}")

Now when you run it, your report will include the number of bikes for each brand from
most common to least:

**kx Brands *x*

Canyon 192
BMC 173
Cannondale 170
Trek 166
GT 150
Giant 147

Name: brand, dtype: int64

value_counts returns a Series. To format this better we need to learn about accessing
individual rows in a series.

1.5 Rows and the index

In an array, you ask for data using an the location (as an int) of the item you want. You
can do this in pandas using iloc. Add this to the end of your program:

First bike

print ("\n*** First Bike #**x*")
row = df.iloc[0]

print (£"{row}")

When you run it, you will see the attributes of the first row of data:

*x*x First Bike **x

brand GT
size 57
purchase_price 277.99

purchase_date 1986-09-07

Section 1.6 CHANGING DATA 5

status available
Name: 5636248, dtype: object

Notice that the data coming back is actually another series.

The last line says that the name (the value for the index column) for this row is 5636248.
In pandas, we usually use this to locate particular rows. For example, there is a row with
bike_id equal to 2969341. Let’s ask for one entry from the

print ("\n*** Some Bike **x*")
brand = df.loc[2969341] ['brand']
print (f"brand = {brand}")

Now you will see the information about that bike:

x*x Some Bike x*
brand = Cannondale

pandas has a few different ways of getting to that value. All of these get you the same
thing:

brand = df.loc[2969341] ['brand'] # Get row, then get value
brand = df['brand'] [2969341] # Get column, then get value
brand df.1loc[2969341, 'brand'] # One call with both row and value

1.6 Changing data

One of your attributes needs cleaning up. Every bike should have a status and it should

be one of the following strings:”available”, “rented”, or “broken”. Get counts for each
unique value in status:

print ("\nx*x* Status x**")
series = df["status"]
missing = series.isnull()
print (f"{missing.sum()} bikes have no status.")
series_counts = series.value_counts()
for value in series_counts.index:
print (f"{series_counts.loc[valuel} bikes are \"{value}\"")

This will show you:

6 Chapter 1. DATA TABLES AND PANDAS

*x*x Status *k*

7 bikes have no status.
389 bikes are "rented"
304 bikes are "broken"
296 bikes are "available"
1 bikes are "Flat tire"

1 bikes are "Available"

Right away we can see two easily fixable problems: Someone typed “Available” instead
of “available”. Right after you read the CSV in, fix this in the data frame:

mask = df['status'] == 'Available'
print (£"{mask}")
df .loc[mask, 'status'] = 'available'

When you run this, you will see that the mask is a series with bike_id as the index
and False or True as the value, depending on whether the row’s status was equal to
“Available”.

When you use loc with this sort of mask, you are saying “Give me all the rows for which
the mask is True.” So, the assignment only happens in the one problematic row.

Let’s get rid of the mask variable and do the same for turning Flat tire into Broken:

df .loc[df['status'] == 'Available', 'status'] = 'available'
df .loc[df['status'] == 'Flat tire', 'status'] '"broken'

Now those problems are gone:

7 bikes have no status.
389 bikes are "rented"
305 bikes are "broken"
297 bikes are "available"

What about the rows with no values for status? We were pretty certain that the bikes
were available, we could just set them to "available”:

missing mask = df['status'].isnull()
df .loc[missing_mask, 'status'] = 'available'

Or maybe we would print out the IDs of the bikes so that we could go look for them:

Section 1.7 DERIVED COLUMNS

missing_mask = df['status'].isnull()
missing _ids = list(df [missing_mask] .index)
print (f"These bikes have no status:{missing_ids}")

But lets just keep the rows where the status is not null:

missing _mask = df['status'].isnull()
df = df [~missing_mask]

At the end of your program, write out the improved CSV:
df.to_csv('bikes2.csv')

Run the program and open bikes2.csv in a text editor.

1.7 Derived columns
Let’s say that you want to add a column with age of the bicycle in days:

bike_id,brand,size,purchase_price,purchase_date,status,age_in_days
5636248,GT,57,277.99,1986-09-07 ,available, 13061
4156134,Giant,56,201.52,2005-01-09,rented, 6362

7971254 ,Cannondale,b54,292.25,1978-02-28,available, 16174

Your first problem is that the purchase_date column looks like a date, but really it is a
string. So you need to convert it to a date. You can do this by applying a function to every

item in the series:

df ['purchase_date'] = df['purchase_date'].apply(lambda s: datetime.date.fromisoformat(s)

(With pandas, there is often more than one way to do things. pandas has a to_datetime
function that converts every entry in a sequence to a datetime object. So here is another

way to convert the string column in to a date column:
df ['purchase_date'] = pd.to_datetime(df['purchase_date']).dt.date

You can look up dt and date if you are curious.)

Now, we can use the same trick to create a new column with the age in days:

today = datetime.date.today()

8 Chapter 1. DATA TABLES AND PANDAS
df ['age_in_days'] = df['purchase_date'].apply(lambda d: (today - d).days)

When you run this, the new bikes.csv will have an age_by_date column.

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.

https://kontinua.org/
https://kontinua.org/

APPENDIX A

Answers to Exercises

10 Chapter A. ANSWERS TO EXERCISES

p

s
)
sl

I

J

)
=
%}%}//

NDEX

null, 1

11

	Data Tables and pandas
	Data types
	pandas
	Reading a CSV with pandas
	Looking at a Series
	Rows and the index
	Changing data
	Derived columns

	Answers to Exercises
	Index

