
Chapter 1

Oscillations

We just finished up a chapter about circular motion, where objects move around in a circle
at either constant (uniform/harmonic) or changing (non-uniform) speeds.

In this chapter, we will study oscillatory motion, which is a type of motion where an
object moves back and forth around an equilibrium point. Oscillations are common in
many physical systems, such as springs, pendulums, and even electrical circuits. Oscil-
lations are important not only because they appear everywhere in physical systems, but
also because they provide a connection between simple motion and more complex be-
haviors. Small oscillations often behave in a very predictable way and can be described
using simple harmonic motion (SHM), which is governed by restoring forces proportional
to displacement.

We will also give an introduction to differential equations used to model oscillatory systems,
often found in engineering and physics.

1.1 Sine and Cosine Graphs [Review]

Let’s recall the two pillars of trigonometry and, consequently, simple harmonic motion:
Sine and Cosine. Recall that these two functions are periodic, meaning they repeat their
values in regular intervals or periods. The sine and cosine functions have a period of 2π
radians or 360◦, repeating their values every 2π radians.

As discussed in the circular motion chapter, the sine function represents the y-coordinate
of a point on the unit circle as it moves around the circle, while the cosine function repre-
sents the x-coordinate. This is the fundemental behavior of the unit circle, where a point
moves around the circle at a constant angular speed ω. The position of the point at any
time t can be described using the following parametric equations:

x(t) = cos(ωt), y(t) = sin(ωt)

The general forms of the sine and cosine functions can be expressed as:

x(t) = A cos(ωt+ φ), y(t) = A sin(ωt+ φ)

where:

• A is the amplitude, representing the maximum displacement from the equilibrium
position.
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2 Chapter 1. OSCILLATIONS

• ω is the angular speed, which determines how quickly the oscillations occur.

• φ is the phase shift, which determines the initial position of the oscillation at t = 0.

Recall that the derivatives of these functions are also periodic, a key property that is useful
for analyzing oscillatory motion:

d

dt
cos(ωt) = −ω sin(ωt)

d

dt
sin(ωt) = ω cos(ωt)

d2

dt2
cos(ωt) = −ω2 cos(ωt)

In the motion we will talk about,

• x(t) will be our position function

• v(t) describes our velocity function, which can be the first derivative of our position

• a(t) is our acceleration function, derived from v(t)

We notice that the second derivative produces a negative multiple of the original function.
This can be simplified in terms of acceleration and position functions: a(t) = −ω2x(t).

1.2 Simple Harmonic Motion

Simple Harmonic Motion will reference many definitions we have seen before and will
continue to see in this chapter. Here are some key terms to know:

Cycle A single complete execution of a periodically repeated motion. Another way to
think about it is a particle, block, or object making a round-trip.

Period The time it takes to complete one cycle of motion. An identity that comes up often
is T = 2π

ω .

Frequency The number of cycles completed per unit time. It is the reciprocal of the
period, represented as Hz.1

Equilibrium The position at which the “default” position of an oscillating object is lo-
cated. In terms of mechanics, this is the position where all the forces acting on the
object are balanced or zero.

1One Hz is equal to one cycle per second. For example, a frequency of 5 Hz means that 5 cycles are
completed in one second. On a monitor, a refresh rate of 60 Hz means the screen updates 60 times per
second. Higher refresh rates can lead to smoother motion perception.
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Restoring Force The force that acts to bring an oscillating object back to its equilibrium
position. It is typically proportional to the displacement from equilibrium and acts
in the opposite direction.

Angular Speed The rate at which an object moves around a circle, measured in radians
per second.

So far, we have discussed oscillatory motion in general terms. Now, let’s focus on a specific
type of oscillatory motion known as Simple Harmonic Motion (SHM). SHM is character-
ized by the following properties:

• The motion occurs around an equilibrium position.

• The restoring force is directly proportional to the displacement from the equilibrium
position and acts in the opposite direction.

• The motion is sinusoidal in nature, meaning it can be described using sine or cosine
functions.

• The period and frequency of the motion are constant, regardless of the amplitude.

• The acceleration always points toward equilibrium and increases in size as the dis-
placement grows.

So the motion continously repeats itself in a regular pattern. It speeds up near equilibrium,
and slows down to a stop at maximum displacement. Examples of these systems are

• A mass attached to a spring, either vertically or horizontally

• A simple pendulum

• Vibrations of a tuning fork or guitar string

We saw in our pendulums chapter how the system has both centripetal acceleration and
acceleration due to gravity, causing oscillations back and forth with changing speed. Like
all mechanical systems, an SHM system has both kinetic and potential energy. For general
simple harmonic motion systems, we can describe its energy as follows:

• The total mechanical energy E of the system is the sum of its kinetic energy K and
potential energy U:

E = K+U

• The kinetic energy K, system dependent, is highest when the object passes through
the equilibrium position.

• The potential energy U depends on the specific system, such as spring potential
energy or gravitational potential energy, but is highest at the maximum displacement
from equilibrium.
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1.3 Springs

Let’s talk about springs! Springs are mechanical devices, usually made out of some rigid
metal material, that store and release energy through deformation. When a spring is
stretched or compressed from its equilibrium position, it exerts a restoring force that tries
to bring it back to its original shape. The most common type of spring is a coil spring,
which consists of a linear wire would into a helical shape.

1.3.1 Hooke’s Law

In 1676, physicist Robert Hooke formulated a principle that describes the behavior of
springs, now known as Hooke’s Law. Hooke’s Law states that the force exerted by an
ideal spring is directly proportional to the displacement from its equilibrium position.

Mathematically, Hooke’s Law can be expressed as:

Fs = −kx

where:

• Fs is the restoring force exerted by the spring (in newtons, N)

• k is the spring constant (in newtons per meter, N/m), which measures the stiffness
of the spring. It is spring-specific

• x is the displacement from the equilibrium position (in meters, m)

• The negative sign represents the fact that the force attempts to bring the spring back
to its equilibrium position.

Since we know that force is related to mass and acceleration through Newton’s Second
Law, we can combine Hooke’s Law with Newton’s Second Law to analyze the motion of
a mass attached to a spring. See Figure 1.1 for a diagram of a mass-spring system.

Fs = ma = −kx (1.1)
ma = −kx (1.2)
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m
Equilibrium

+x

−x

Figure 1.1: A diagram showing a block of mass m displaced +x and −x from equilibrium.

But since above we found a relation between acceleration and position, we can write:

m
d2x

dt2
= −kx (1.3)

d2x

dt2
+

k

m
x = 0 (1.4)

We can see that this equation describes simple harmonic motion, where the acceleration is
proportional to the negative of the displacement. In this form, we can identify the angular
speed ω of the oscillation as:

ω =

√
k

m

as the term in front of the x in equation (1.4) is ω2. Thus, we can further define the period
as

T = 2π

√
m

k

and the frequency as

f =
1

2π

√
k

m

In a later section of this chapter, we will solve this differential equation to find the position
function x(t) of general mass-spring systems.
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Exercise 1 Mass-Spring Frequency Change

.A block is attached to a spring and set
into oscillatorymotion, and its frequency
is measured. If this block were removed
and replace with a block of 1/2 the mass,
how would the frequency of oscillations
compare to the original frequency?

1. The frequency would be halved.

2. The frequency would remain the
same.

3. The frequency would increase by a
factor of

√
2.

4. The frequency would decrease by
a factor of

√
2.

Answer on Page 17

Working Space

1.3.2 Spring Potential Energy

Let’s recall that Work from a physics standpoint is defined as the transfer of energy
through a certain distance via a force. When we alter the length of a spring through either
compression or extenson, we are performing work on the spring. This work is stored as
potential energy within the spring, which can be released when the spring returns to its
equilibrium position.

Let’s find an equation for this change in potential energy, which gets stored up in the
spring. Recall the two mathematical definitions for work:

• Work as the product of force and distance: W = F · d

• Work as the integral of force over a distance: W =
∫
F dx

We need to use the integral definition, since, by our definition of Hooke’s Law, the force
exerted by a spring varies with displacement, so every tiny bit of distance, or dx is differ-
ent. For any spring starting at equilibrium (0), and moving to some final position xf, we
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can write:

W =

∫xf
xi

Fx dx

Ws =

∫xf
xi

Fs dx

=

∫xf
0

−kxdx

=
−kx2

2

∣∣∣∣xf
0

=
−k(xf)

2

2

This work done on the spring is stored as potential energy, so we can say that the change
in potential energy of the spring is equal to the negative of the work done by the spring
force:

∆Us = −Ws =
1

2
kx2f (1.5)

We can see this graphically in Figure 1.2, where the area under the force vs. displacement
graph represents the work done on the spring, which is equal to the change in potential
energy.

F
s = −kxkx

x

Area = 1
2bh = 1

2kx(x)

Area =
1

2
bh

=
1

2
(kx)(x)

=
1

2
kx2

Figure 1.2: A graph of force versus displacement for a spring, equal to the work done and
change in potential energy.

Notice that Equation (1.5) is similar in structure to the kinetic energy equation, K =
1
2mv2. This is not a coincidence, as both equations describe forms of energy in mechanical
systems, and are derived from linear systems. The big idea is:
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When the effort (force) needed increases in direct proportion to what you’re trying to
change, the energy required ends up depending on the square of that change.

For a spring

- the farther you stretch or compress it, the more force it exerts to return to equilibrium
(Hooke’s Law)

- the more energy is stored in the spring (spring potential energy)

For kinetic energy

- the faster you try to move an object, the more force is needed to accelerate it (New-
ton’s Second Law)

- the more energy the object has due to its motion (kinetic energy)

Exercise 2 Finding the equation for a mass-spring system

.This question is from anAP-style physics
review. A block of mass 4 kg on a frici-
tonless, horizontal table is attached to a
springwith spring constant k = 400N/m
and undergoes simple harmonic oscilla-
tions about its equilibrium position and
its amplitude A = 6 cm. If the block is at
x = 6 cm at time t = 0 and has a velocity
of 0 cm/s at that time, which of the fol-
lowing equations (with x in cm and t in
seconds) describes the block’s position
as a function of time?

(A) x(t) = 6 cos(10t)

(B) x(t) = 6 sin(10t)

(C) x(t) = 6 sin(10t+ 1
2π)

(D) x(t) = 6 sin(10πt+ 1
2π)

(E) x(t) = 6 sin(10πt− 1
2π)

Answer on Page 17

Working Space
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Exercise 3

.This question is from anAP-style physics
review.

Which of the following characteristics are
true of simple harmonic motion? Select
all that apply.

I The acceleration is constant.

II The restoring force is proportional
to the displacement from equilib-
rium.

III The frequency is independent of the
amplitude.

(a) II only

(b) I and II only

(c) I and III only

(d) II and III only

Answer on Page 18

Working Space

Exercise 4 Energy Transfer in a Mass-Spring System

.A pinball machine uses a spring to launch
a ball of mass 0.2 kg. The spring has a
spring constant of 500 N/m and is com-
pressed by 0.24 m before release. As-
suming energy is conserved and no fric-
tional losses occur, what is the speed of
the ball as it leaves the spring?

Answer on Page 18

Working Space
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1.4 Mass-Spring Systems and Linear Differential Equations

We have already seen that the motion of a mass attached to a spring can be modeled using
differential equations. Here, we will examine this connection more closely.

1.4.1 Undamped Simple Harmonic Motion

Starting fromNewton’s Second Law andHooke’s Law, we derived the differential equation
for simple harmonic motion:

m
d2x

dt2
+ kx = 0. (1.6)

The term m d2x
dt2

comes directly from Newton’s Second Law, representing the net force re-
quired to accelerate the mass. The term kx arises from Hooke’s Law, which states that the
spring exerts a restoring force proportional to displacement and directed toward equilib-
rium.

Equation (1.6) is an example of a second-order linear differential equation with constant
coefficients without damping. It describes an ideal mass-spring system with no external
influences—one that oscillates forever, undamped and unforced.

The ma(t) term is Newton’s Second Law part of the equation, while the kx(t) term comes
from Hooke’s Law. This is a second-order linear differential equation with constant coeffi-
cients. What if the spring system is being driven by a third force, like friction or damping?
We can add an additional force term F(t) to the equation: Ff(t) = −cv = −cx ′ for forcing
function.

1.4.2 Introducing Damping

Real systems are often influenced by additional forces. One common example is a damp-
ing force, such as friction or air resistance, which opposes the motion of the mass.

A typical damping force is proportional to the velocity and can be written as

Fd(t) = −c
dx

dt
,

where c is the damping coefficient.

Including this force in Newton’s Second Law modifies our differential equation. Instead
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of the undamped equation (1.6), we obtain:

ma(t) = −c v(t) − k x(t) (1.7)

m
d2x

dt2
+ c

dx

dt
+ kx = 0 (1.8)

This is still a second-order linear differential equation with constant coefficients, but its
solutions behave very differently. Depending on the value of c, the system may oscillate
with decreasing amplitude, fail to oscillate at all, or return to equilibrium as quickly as
possible.

Finding the roots of the characteristic equation associated with Equation (1.8) allows us
to classify the system’s behavior into three categories. Recall that the quadratic formula
gives us the roots using our coefficients:

r =
−c±

√
c2 − 4mk

2m

Characteristic Roots Homogeneous Solution Damping Type
r1, r2 ∈ R, both negative yh = C1e

r1t + C2e
r2t Overdamped

r real, repeated yh = (C1 + C2t)e
rt Critically damped

r = α± iβ, α < 0 yh = eαt(C1 cos(βt) + C2 sin(βt)) Underdamped
r = ±iβ yh = C1 cos(βt) + C2 sin(βt) Simple Harmonic Motion

Table 1.1: Classification of solutions to the damped harmonic oscillator based on charac-
teristic roots.

Without going into too much linear algebra, the function of a mass spring is given by
y(t) = yh(t) +yp(t), where yh is the homogeneous solution (the part we solved above by
setting the differential equation to 0), and yp is the particular solution, which depends on
any external forcing functions. In this section, we focused on the homogeneous solution.
If the equation (1.8) had a forcing function F(t) on the right side, we would need to find
a particular solution yp to account for that.

FIXME solving differential equations given initial conditions FIXME in book problems
about oscillations, which type of damping, etc.

1.5 Pendulums

You may be surprised to know that pendulums act the exact same way as roller coasters
from the circular chapter, in terms of forces. But, similar to springs, the oscillate back and
forth unless acted upon by a damping force.

A pendulum has an equilibrium position θ = 0 such that it is parallel to its gravitational
component. A pendulum also has a maximum angle θmax from its equilibrium position. It
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will swing through a set arc in a repetitive motion, which is a type of motion we call simple
harmonic motion, similar to springs (which we will cover also cover in the oscillations
chapter). The tension force is always directed towards the pivot. This is diagramed below
in Figure 1.3

Massless Rod

Pivot

Equilibrium Position

Arc Path

θ

Figure 1.3: The anatomy of a pendulum.

When displaced by an angle θ from the vertical equilibrium position (θ = 0), gravity
provides a restoring force that acts along the arc of motion. This restoring force is given by
F = −mg sin θ, where the negative sign indicates that the force always points back toward
the equilibrium position. The tension in the string keeps the bob moving along its curved
path, while gravity continually tries to return it to rest.

The net force shifts such that the acceleration arrow is not always pointing to the center.
The net force is a combination of the tension (centripetal) force and the gravitational
(tangential), so rather it points at different points along the arc of the circle, as it as
always changing due to the height of the pendulum. This is demonstrated in Figure 1.4.

Note the following differences in energy and forces at the equilibrium position versus the
maximum angle positions, summarized in Table 1.2.

Note here that the magnitude of the restoring force −mg sin(θ), which is not directly pro-
portional to the angular displacement θ. However, for small angles (typically less than
about 1 radian or 180◦), we can use the small-angle approximation sin(θ) ≈ θ (in radi-
ans), and state the restoring force as F ≈ −mgθ. This allows us to treat the pendulum’s
motion as simple harmonic motion for small oscillations, where the restoring force is ap-
proximately proportional to the angular displacement.
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At θ = 0 At θ = θmax
Frestoring = 0 Frestoring = max

at (tangential acceleration) = 0 at = max
PE = 0 PE = mgh

KE = max KE = 0

V = max v = 0

Table 1.2: Comparison of pendulum quantities at equilibrium andmaximumdisplacement

m~g

~T

~Fnet

Figure 1.4: The net force at different locations of the arc.
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Exercise 5 Pendulum Period Dependence

.A simple pendulum consists of a mass
m attached to a massless rod L, swing-
ing under the influence of gravity. De-
rive the equation for the period of a sim-
ple pendulum. Which of the following
changes would affect the period T of the
pendulum’s oscillation?

1. Increasing the mass m of the pen-
dulum bob.

2. Increasing the length L of the string.

3. Increasing the amplitude (maximum
angle) of the swing.

4. Decreasing the acceleration due to
gravity g.

Answer on Page 18

Working Space

This exercise showed you that the period of a simple pendulum depends on the length of
the pendulum and the acceleration due to gravity, but not on the mass of the bob or the
amplitude of the swing (for small angles).

One derivation from the exercise above was the Equation ??, which can be rearranged as
d2θ
dt2

= −g
Lθ. Solving this differential equation2 will yield the angular position function

θ(t) = θmax sin(ωt + φ0) or equivallently, θ(t) = θmax sin(
√

g
Lt + φ0) of the pendulum

over time, which describes its oscillatory motion. Note that this differential equation does
not the depend on mass of the bob nor the amplitude of the swing θmax, a core factor of
pendulum harmonic motion.

2We will go more in depth about this in a future chapter.
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Exercise 6 Pendulum on the Moon

.A simple pendulum has a period of 2
seconds when measured on Earth. If the
same pendulumwere taken to theMoon,
where the acceleration due to gravity is
approximately 1

6 , what would be its new
period?

a Approximately 0.8 seconds

b Approximately 2 seconds

c Approximately 4.9 seconds

d Approximately 6.8 seconds

Answer on Page 19

Working Space

1.6 Alternating Current

We have talked about Alternating Current (AC) in previous chapters, but now we will
explore its connection to oscillations. AC is an electric current that periodically reverses
direction, in contrast to Direct Current (DC), which flows in a single direction and pro-
vides constant voltage. The voltage and current in an AC circuit vary sinusoidally with
time, making them ideal for modeling using oscillatory functions. FIXME expand this

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.

https://kontinua.org/
https://kontinua.org/




Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 6)

The correct answer is: The frequency would increase by a factor of
√
2.

The frequency of oscillation for a mass-spring system is given by the formula:

f =
1

2π

√
k

m

where k is the spring constant and m is the mass attached to the spring. Since frequency
is inversely proportional to the square root of the mass, if the mass is halved, the new
frequency f ′ can be calculated as follows:

f ′ =
1

2π

√
k

m/2

=
1

2π

√
2k

m

=
√
2 · 1

2π

√
k

m

=
√
2 · f

Therefore, the frequency increases by a factor of
√
2 when the

Answer to Exercise 2 (on page 8)

First, we find the angular frequency ω using the formula:

w = 2πf =

√
k

m
=

√
400N/m

4kg =
√
100 = 10 rad/s

Therefore, the general equation for the position of a mass-spring system undergoing sim-
ple harmonic motion is:

x(t) = A cos(ωt+ φ)

becomes x = 6 sin(10t + φ) since the initial velocity is 0, meaning it starts at maximum
displacement. Solving for φ using the initial condition x(0) = 6 cm:

6 = 6 sin(φ) =⇒ sin(φ) = 1 =⇒ φ =
π

2

17
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So the base equation becomes:

x(t) = 6 sin(10t+ π

2
)

Which is option C.

Answer to Exercise 3 (on page 9)

Assessing statement I: The acceleration in simple harmonic motion is not constant; it varies
with displacement. Therefore, statement I is false. (b), (c) cannot be correct. Statement II
must be true since it appears in both remaining answer choices. Statement III is also true,
as the frequency of simple harmonic motion does not depend on amplitude. Therefore,
the correct answer is (d), II and III only.

Answer to Exercise 4 (on page 9)

To find the speed of the ball as it leaves the spring, we can use the principle of conservation
of mechanical energy. The net energy in the system remains constant, meaning that the
potential energy stored in the compressed spring is converted into the kinetic energy of
the ball when it is released. The potential energy stored in the spring when compressed
is given by:

Us =
1

2
kx2 =

1

2
(500)(−0.24)2 = 14.4 J

The kinetic energy of the ball as it leaves the spring is the same amount, so we set the
potential energy equal to the kinetic energy:

1

2
mv2 = Us

Solving for v:

v =

√
2Us

m
=

√
2(14.4)

0.2
=

√
144 = 12m/s

The speed of the ball as it leaves the spring is 12m/s.

Answer to Exercise 5 (on page 14)

We know that the restoring force for a pendulum is given by F = −mg sin θ. For small
angles, we can approximate sin θ ≈ θ (in radians), leading to F ≈ −mgθ. For any point
on the circle, we can relate the angular displacement θ to the arc length x using x = Lθ,
where L is the length of the pendulum. Thus, we can rewrite the restoring force in terms
of the second derivative, which represents angular acceleration:
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atan =
d2x

dt2
= L

d2θ

dt2
(1.9)

Using Newton’s Second Law, we have:

mL
d2θ

dt2
= −mg sin θ (1.10)

L
d2θ

dt2
+ g sin θ = 0 (1.11)

d2θ

dt2
+

g

L
sin θ = 0 (1.12)

But for small angles, we can approximate sin θ ≈ θ, leading to:

[label = eq : linearpendulum]
d2θ

dt2
+

g

L
θ = 0 (1.13)

This is a second-order linear differential equation with constant coefficients, similar to the
mass-spring system problems discussed earlier. The angular frequency ω of the pendu-
lum can be identified as:

ω =

√
g

L
(1.14)

Therefore, the period T of the pendulum is given by:

T = 2π

√
L

g
(1.15)

Answer to Exercise 6 (on page 15)

The correct answer is: Approximately 4.4 seconds.

The period T of a simple pendulum is given by the formula:

T = 2π

√
L

g

where L is the length of the pendulum and g is the acceleration due to gravity.

On Earth, the period is 2 seconds, so we can set up the equation:

2 = 2π

√
L

gEarth

This shows that T is inversely proportional to the square root of g. We can rearrange this
equation to solve for L. So if g decreases by a factor of 6, then T will increase by a factor
of

√
6.
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Now, on the Moon, the acceleration due to gravity is approximately 1
6gEarth. We can

substitute this into the period formula:

TMoon = 2π

√
L

gMoon
= 2π

√
L

1
6gEarth

= 2π

√
6L

gEarth
=

√
6 · 2π

√
L

gEarth
=

√
6 · TEarth

Since our original period on Earth is 2 seconds, we have:

TMoon =
√
6 · 2 ≈ 4.9 seconds

Which is equal to option (c).
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