
Chapter 1

Linear Combinations of Vectors

In the introductory linear algebra chapter, you learned that vectors and matrices can be
rotated, inverted, and added. In this chapter, we will explore linear combinations of
vectors and the span of group of vectors. The span of a group of vectors is the set of
vectors that can be made with linear combinations of the original group of vectors. We
will offer mathematical and visual explanations later in the chapter. First, let’s examine
linear combinations.

A linear combination is simply the addition of vectors with leading scalar multipliers. For
example, 3 [2,−1] + 2 [3, 5] is a linear combination of the vectors [2,−1] and [3, 5]. Another
way to say this is:

Linear Combination of Vectors
A linear combination of a list of n vectors, v1,v2, . . . , vn takes the form:

a1v1 + a2v2 + · · ·+ anvn

where a1, a2, · · · , an ∈ R

Example: Find a linear combination of [2, 1,−3] and [1,−2, 4] that gives the vector [17,−4, 2].

Solution: We are looking for a1 and a2 such that:

a1 [2, 1,−3] + a2 [1,−2, 4] = [17,−4, 2]

Looking at each dimension separately, we get the system of equations:

2a1 + 1a2 = 17

1a1 − 2a2 = −4

−3a1 + 4a2 = 2

If we can solve this system of equations, we will find a1 and a2. Let’s multiply the first
equation by 2 and add it to the second equation:

2 [2a1 + a2] + [a1 − 2a2] = 2 (17) + −4

4a1 + 2a2 + a1 − 2a2 = 34− 4

1
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5a1 = 30

a1 = 6

Now we can take a1 and substitute it back into any equation in our system to find a2.
Let’s use the third equation:

−3 (6) + 4a2 = 2

−18+ 4a2 = 2

4a2 = 20

a2 = 5

Since we used all 3 equations, we know a1 = 6 and a2 = 5 are solutions to all 3 equations.
If we had only used the first two equations to find a1 and a2, we would want to substitute
our values back into the third equation to make sure our solution holds for that equation
also.

Therefore, 6 [2, 1,−3] + 5 [1,−2, 4] = [17,−4, 2].

Exercise 1 Linear Combinations

.Find a linear combination of the first two
vectors that yields the third vector.

1. [1, 2], [−3, 1], [4, 5]

2. [9, 4], [0, 1], [−5, 3]

3. [7,−2], [−8, 4], [6,−2]

Answer on Page 9

Working Space
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Sometimes, a set of vectors cannot be combined to make a specific vector. Take the pair
of vectors we have looked at before: [2, 1,−3] and [1,−2, 4]. Can we find a combination to
make vector [17,−4, 5]? Let’s try. We define a1 and a2 such that:

a1 [2, 1,−3] + a2 [1,−2, 4] = [17,−4, 5]

Which creates the system of equations:

2a1 + a2 = 17

a1 − 2a2 = −4

−3a1 + 4a2 = 5

We have two variables (a1 and a2) and three equations. Let’s use the first two to find
a1 and a2, then check our answers by substituting our solutions into the third equation.
First, we’ll multiply the second equation by −2 and add that to the first equation:

2a1 + a2 + (−2) (a1 − 2a2) = 17+ (−2) (−4)

2a1 + a2 − 2a1 + 4a2 = 17+ 8

5a2 = 25

a2 = 5

Substituting for a2 back into the first equation and solving for a1:

2a1 + 5 = 17

2a1 = 12

a1 = 6

Now, let’s check if a1 = 6, a2 = 5 is a solution to the third equation:

−3 (6) + 4 (5) = 5

−18+ 20 = 2 6= 5

Therefore, there is no linear combination of the vectors [2, 1,−3] and [1,−2, 4] that yields
[17,−4, 5].
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1.1 Visualizing Linear Combinations

First, let’s look at what vectors can be made from linear combinations of the 2-dimensional
unit vectors i = [1, 0] and j = [0, 1]. Suppose we are looking for a linear combination of i
and j to create the vector [3,−4]. We can find such a linear combination:

3i+ (−4) j = 3 [1, 0] − 4 [0, 1] = [3,−4]

In fact, with i and j, we can create any 2-dimensional vector. To prove this, consider a
generic vector, z = [a, b], where a, b ∈ R. We are looking for a linear combination of i and
j such that:

c1i+ c2j = [a, b]

The above equation yields the system of equations:

c1 (1) + c2 (0) = a

c1 (0) + c2 (1) = b

And the solution to this system of equations is:

c1 = a

c2 = b

Therefore, using i and j, we can construct any vector in R2 (that is, any vector in the
xy-plane). What about combinations of other vectors?

Let’s consider linear combinations of two vectors: u = [1, 2] and v = [2, 0]. The vectors are
shown in figure 1.1.

−3 −2 −1 1 2 3
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2
u

v

Figure 1.1: The vectors u = [1, 2] and v = [2, 0].
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Figure 1.2: To create vector [4,−2] with u = [1, 2] and v = [2, 0], we begin by adding two
u vectors to reach a y-value of 4.

−3 −2 −1 1 2 3

−2

2

4

u

u

-v-0.5v

[−1, 4]

Figure 1.3: If u = [1, 2] and v = [2, 0], then 2u− 1.5v = [−1, 4].
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Suppose we want to construct the vector [−1, 4]. Since only u has value in the y-dimension,
we can start by adding u vectors to reach y = 4 (see figure 1.2). Next, we can use v vectors
to reach [−1, 4] (see figure 1.3).

Using this method, we can imagine reaching any point in R2: we add or subtract as many
u vectors as needed to reach the appropriate y-value, then add or subtract as many v
vectors to reach the appropriate x-value.

Let’s look at another pair of vectors: p = [2, 2] and q = [−1,−1] (see figure 1.4). Again,
let’s try to use p and q to construct the vector [−1, 4]. We begin by using p to reach the
y-value of 4 (see figure 1.5).

−3 −2 −1 1 2 3
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Figure 1.4: The vectors p = [2, 2] and q = [−1,−1].
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Figure 1.5: Adding 2 p vectors gets us to the appropriate y-value of 4.

But now we run into a problem: no matter how many multiples of q vectors we add or
subtract, we just move along the p vector and never reach our goal of [−1, 4] (see figure
1.6). Notice that p and q lie on the same line (for a better visualization, refer back to 1.4).
When two vectors lie on the same line, we call them linearly dependent.
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Figure 1.6: There is no linear combination of p = [2, 2] and q = [−1,−1] that yields the
vector [−1, 4].

1.2 Linearly Dependent Vectors

Two vectors are linearly dependent if one is a multiple of the other. Mathematically,

Linearly dependent vectors

Vectors u = [u1, u2, . . . , un] and v = [v1, v2, . . . , vn] are linearly dependent if

v = au

Where a ∈ R is a constant.

Graphically, these vectors lie on the same line (or plane in 3D).

If two vectors are linearly dependent, then linear combinations of those vectors can only
create vectors that lie on the same line as the vectors. If two vectors are not linearly
dependent, they are referred to as linearly independent and linear combinations of those
vectors can create any vector in R2 (for two dimensions, we will discuss higher dimensions
in the next chapter).

Example: Which of the following 3 vectors are linearly dependent, if any? u = [1, 2, 3],
v = [−3, 4,−1], w = [6,−8, 2].

Solution: Two vectors are linearly dependent if one is a scalar multiple of the other. Let’s
compare u and v. Since the first component of u is 1 and the first component of v is -3,
let’s multiply u by -3 to see if we get v:

−3u = −3 [1, 2, 3, ] = [−3,−6,−9] 6= v
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Therefore, u and v are not linearly dependent. Now let’s examine v and w. Again, we will
use the first components: the first component of w is 6, so let’s see if multiplying v by -2
yields w:

−2v = −2 [−3, 4,−1] = [6,−8, 2] = w

Therefore, v and w are linearly dependent. Since we already know that u and v are not
linearly dependent, we also know that u and w are also not linearly dependent.

Exercise 2 Linear Dependence

.Identify which, if any, of the following
vectors are linearly dependent:

1. a = [−4, 1, 4]

2. b = [−4, 5,−3]

3. c = [2,−4, 6]

4. d =
[
1,− 1

4 ,−1
]

5. e = [1,−2, 3]

6. f =
[
−6, 32 , 6

]

Answer on Page 11

Working Space
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Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 2)

1. We are looking for a1 and a2 such that:

a1 [1, 2] + a2 [−3, 1] = [4, 5]

Which creates the system of equations:

a1 − 3a2 = 4

2a1 + a2 = 5

We can multiply the first equation by −2 and add it to the second to solve for a2:

−2 (a1 − 3a2) + 2a1 + a2 = −2 (4) + 5

6a2 + a2 = −8+ 5

7a2 = −3

a2 = −
3

7

Substituting a2 back into an equation and solving for a1:

a1 − 3

(
−
3

7

)
= 4

a1 +
9

7
= 4

a1 =
19

7

Therefore, 19
7 [1, 2] − 3

7 [−3, 1] = [4, 5].

2. We are looking for a1 and a2 such that:

a1 [9, 4] + a2 [0, 1] = [−5, 3]

Which creates the system of equations:

9a1 = −5

9
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4a1 + a2 = 3

We can find a1 from the first equation:

a1 = −
5

9

Substituting for a1 back into the second equation and solving for a2:

4

(
−
5

9

)
+ a2 = 3

a2 −
20

9
= 3

a2 =
47

9

Therefore, − 5
9 [9, 4] +

47
9 [0, 1] = [−5, 3].

3. We are looking for a1 and a2 such that:

a1 [7,−2] + a2 [−8, 4] = [6,−2]

Which yields the system of equations:

7a1 − 8a2 = 6

−2a1 + 4a2 = −2

Doubling the second equation and adding it to the first:

7a1 − 8a2 + 2 (−2a1 + 4a2) = 6+ 2 (−2)

7a1 − 8a2 − 4a1 + 8a2 = 6− 4

3a1 = 2

a1 =
2

3

Substituting for a1 back into the second equation and solving for a2:

−2

(
2

3

)
+ 4a2 = −2

−
4

3
+ 4a2 = −2

4a2 = −
2

3

a2 = −
1

6

Therefore, 2
3 [7,−2] − 1

6 [−8, 4] = [6,−2]
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Answer to Exercise 2 (on page 8)

We see that a
−4 = − 1

4 [−4, 1, 4] =
[
1,− 1

4 ,−1
]
= d. Additionally, 3

2a = 3
2 [−4, 1, 4] =[

−6, 32 , 6
]
= f. Therefore, vectors a, d, and f are linearly dependent.

We also see that 1
2c = 1

2 [2,−4, 6] = [1,−2, 3] = e. Therefore, vectors c and e are linearly
dependent. Vector b is not linearly dependent to any of the other vectors.
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