
Chapter 1

A deeper look at Python syntax

1.1 Where did we leave off?

In the previous Introduction to Python chapter, We started by installing Python and setting
up VSCode, then practiced using the console (terminal) to execute .py files. Recall that
runs code sequentially, one line at a time, and that output appears in the console.

We can output to the screen with print(), including how Python formats output by default
and how to customize it. Next, we introduced variables and common datatypes such as
strings, integers, floats, booleans, lists, and dictionaries.

Mathematical operations, including arithmetic operators were demonstrated. We played
with in str() and the method to get input from the console, input(). Finally, we worked
with conditionals and loops to control program flow, then introduced strings and lists
as sequence types, and worked with them. With these tools, you should now be able to
write basic Python programs that read input, store data, make decisions, repeat actions,
and produce useful output.

Let’s now build on this foundation with some more advanced concepts, such as func-
tions, classes, and libraries. We will also cover error handling, and experiment with basic
graphing ability using the Matplotlib library.

1.2 Functions

As our programs get larger, we begin to repeat the same sets of steps again and again.
Rather than copying and pasting code (which is hard to maintain and easy to break), we
can group instructions into functions. A function is a named block of code that performs a
task. Once a function is defined, it can be called (used) as many times as needed.

You have already used functions before, even if you did not know it! For example, print(),
input(), len(), and type() are built-in Python functions.

1.2.1 Defining and Calling a Function

To define a function in Python, we use the def keyword, followed by:

1

2 Chapter 1. A DEEPER LOOK AT PYTHON SYNTAX

• a function name

• parentheses ()

• a colon :

• an indented block of code

def say_hello():
print("Hello!")
print("Welcome to Python.")

This code defines the function, but it does not run the code inside it yet. To execute the
function, we must call it by using its name followed by parentheses:

say_hello()

When Python reaches a function call, it temporarily jumps into the function, runs the
indented code, and then returns to the line after the call. Just like conditionals and loops,
indentation matters.

1.2.2 Parameters and Arguments

Most functions are more useful when they can work with different values. A parameter is
a variable name listed inside the parentheses of a function definition. An argument is the
actual value you pass into the function when you call it.

def greet(name):
print("Hello", name)

Here, name is a parameter. We can call the function with different arguments:

greet("Alex")
greet("Chicago")

1.2.3 Return Values

Some functions return a value. Returning a value allows the function to produce a result
that can be stored in a variable or used in an expression.

Section 1.2 FUNCTIONS 3

def add(a, b):
return a + b

Now we can use the returned value:

x = add(3, 4)
print(x)

Output:

7

We can alter the function to expect a certain parameter type, such as integers, and return
a specific type as well:

def add(a: int, b: int) -> int:
return a + b

It is important to note that Python won’t raise a TypeError if you pass in the wrong type,
but this is a helpful way to document your code for other programmers, which you may
often work with, and yourself.

We can force the parameters to be a certain type, and raise an error if the wrong type is
passed in:

def add(a: int, b: int) -> int:
if not isinstance(a, int) or not isinstance(b, int):

raise TypeError("Both arguments must be integers")
return a + b

Important: print() displays information to the console, but it does not return a useful
value. return sends a value back to where the function was called. Functions that do not
have a return statement return None by default, and are often called void functions.

1.2.4 Scope

A variable created inside a function only exists inside that function. This idea is called
scope. If you define a variable inside a function, you cannot use it outside of the function
unless you return it.

4 Chapter 1. A DEEPER LOOK AT PYTHON SYNTAX

def make_number():
x = 10
return x

y = make_number()
print(y)

The variable x exists only inside make_number(), but the value it returns is stored in y
outside the function.

1.2.5 Summary

• Functions group code into reusable blocks

• Functions are defined with def and called using parentheses

• Parameters receive input values (arguments) when a function is called

• return sends a value back to the caller

• Variables inside a function have local scope

Exercise 1 Tracing a Function Call

.Consider the following code:

def double(x):
return x * 2

a = 3
b = double(a)
print(b)

What is printed? What is the value of a
after the program runs?

Answer on Page 19

Working Space

Section 1.3 CLASSES ANDMORE BASIC OBJECT-ORIENTED PROGRAMMING 5

Exercise 2 Write a Function

.Write a function called is_even(n) that
returns True if n is even and False oth-
erwise. Then show an example call to
your function using n = 7.

Answer on Page 19

Working Space

1.3 Classes and More Basic Object-Oriented Programming

So far, we have worked mostly with individual variables, lists, and functions. As programs
grow larger, it becomes useful to group related data and behavior together. Object-Oriented
Programming (OOP) is a programming style that organizes code around objects rather than
individual functions.

In Python, objects are created from classes. A class is a blueprint for creating objects that
contain both data (variables) and behavior (functions).

1.3.1 Defining a Class

A class is defined using the class keyword, followed by:

• the class name (by convention, written in CamelCase)

• a colon :

• an indented block of code

class Person:
pass

This defines an empty class. It does not do anything yet, but it gives Python a new type
called Person.

6 Chapter 1. A DEEPER LOOK AT PYTHON SYNTAX

1.3.2 Creating Objects

An object is an instance of a class. Objects are created by calling the class name like a
function.

p1 = Person()
p2 = Person()

Here, p1 and p2 are two separate objects, both created from the same class.

1.3.3 The __init__ Method

Most classes need to store data. This is done using a special function called __init__. This
function runs automatically when a new object is created.

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

The parameter self refers to the current object being created. Each object gets its own
copy of the variables defined using self.

p = Person("Alex", 20)

Now the object p has two attributes:

• p.name

• p.age

1.3.4 Accessing Object Attributes

Attributes are accessed using dot notation.

print(p.name)
print(p.age)

Section 1.3 CLASSES ANDMORE BASIC OBJECT-ORIENTED PROGRAMMING 7

Output:

Alex
20

Each object stores its own values. Creating another object does not overwrite existing
ones.

1.3.5 Methods

Functions defined inside a class are called methods. Methods describe behavior that be-
longs to the object.

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def greet(self):
print("Hello, my name is", self.name)

Calling a method uses dot notation:

p = Person("Alex", 20)
p.greet()

Output:

Hello, my name is Alex

1.3.6 Printing Objects

By default, printing an object produces an unreadable result:

print(p)

Output (example):

8 Chapter 1. A DEEPER LOOK AT PYTHON SYNTAX

<__main__.Person object at 0x7f9c1a3d>

This actually is the object’s memory address in the computer’s memory, but it may be a
bit tedious want to print that and manually search ever byte. Instead, to control how an
object is printed, we can define the special method __str__.

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def __str__(self):
return f"{self.name} ({self.age} years old)"

Now printing the object gives a meaningful result:

p = Person("Alex", 20)
print(p)

Output:

Alex (20 years old)

1.3.7 Why Use Classes?

Classes allow us to:

• group related data and behavior together

• create many objects with the same structure

• write code that is easier to understand and maintain

1.3.8 Summary

• A class is a blueprint for creating objects

• Objects store data using attributes

• __init__ initializes new objects

Section 1.3 CLASSES ANDMORE BASIC OBJECT-ORIENTED PROGRAMMING 9

• Methods define behavior for objects

• __str__ controls how objects are printed

• This was only a foundation of OOP; more advance concepts exist and are stronger
in other programming languages such as Java and C++

Exercise 3 Tracing an Object

.Consider the following code:

class Counter:
def __init__(self, value):

self.value = value

def increment(self):
self.value += 1

c = Counter(5)
c.increment()
c.increment()
print(c.value)

What is printed?

Answer on Page 19

Working Space

Exercise 4 Custom Printing

.Write a class called Book that stores a title
and an author. Add a __str__method so
that printing a book displays:

Title by Author

Answer on Page 19

Working Space

10 Chapter 1. A DEEPER LOOK AT PYTHON SYNTAX

1.4 Libraries

A library is a collection of pre-written code that provides additional functionality without
requiring you to write everything from scratch. Python includes many built-in libraries
that can be used to perform common tasks such as mathematical calculations, data han-
dling, and visualization. You’ll often find that code you are seeking can be found through
an open-source library which already exists.

To use a library, it must first be imported.

1.4.1 Importing Libraries

The simplest way to import a library is using the import keyword.

import math
print(math.sqrt(16))

In this example, the math library provides access to mathematical functions such as square
roots.

It is also possible to import specific values or functions from a library.

from math import pi
print(pi)

This allows direct access to pi without referencing the library name.

1.4.2 Summary

• Libraries extend Python’s functionality

• The import keyword is used to load libraries

• Specific components can be imported directly when needed

1.5 Matplotlib

Matplotlib is the most widely used plotting library in Python. It can produce simple charts
quickly (line plots, scatter plots, bar charts, histograms) and also supports publication-
quality figures with precise control over labels, legends, and layout. We will use it widely

Section 1.5 MATPLOTLIB 11

throughout this course to visualize data, create simulations for proving formulas, and
experiment with datasets.

1.5.1 Installing and importing

If you are working locally, you can install Matplotlib with:

pip install matplotlib

In most scripts, you will import the plotting interface pyplot:

import matplotlib.pyplot as plt

1.5.2 A simple line graph

A line plot is ideal for showing how a value changes over time or across an ordered
variable. Let’s create line.py

import matplotlib.pyplot as plt # the matplotlib library, which we will call
using plt↪→

two lists containing values
x = [0, 1, 2, 3, 4, 5]
y = [0, 1, 4, 9, 16, 25]

a 2d plot, used for line graphs
plt.plot(x, y)
add a title to our plot
plt.title("A Simple Line Plot")
add axis labels
plt.xlabel("x")
plt.ylabel("y = x^2")
plt.show() # pops up a new window

Running python3 line.py will open a new interactive window in your computer, with the
following image:

12 Chapter 1. A DEEPER LOOK AT PYTHON SYNTAX

Figure 1.1: The output of line.py.

1.5.3 Labels, legends, and grids

A plot is more useful when it clearly communicates what each element represents. Let’s
add on to line.py by creating lineTwoOutputs.py and adding labels, a legend, and an-
other set of data.

import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4, 5]
y1 = [0, 1, 4, 9, 16, 25]
y2 = [0, 1, 8, 27, 64, 125]

plt.plot(x, y1, label="x^2")
plt.plot(x, y2, label="x^3")

plt.title("Two Functions on One
Axes")↪→

plt.xlabel("x")
plt.ylabel("value")
plt.grid(True)
plt.legend()
plt.show()

Figure 1.2: y = x2 and y = x3 on the same
graphed.

Section 1.5 MATPLOTLIB 13

1.5.4 Visualizing Relationships with scatter plots

Scatter plots are excellent for showing how two variables relate (for example, height and
weight).

This very basic scatter plot shows the relationship between studying time and score.

import matplotlib.pyplot as plt

hours = [1, 2, 3, 4, 5, 6]
scores = [55, 60, 66, 72, 78,

85]↪→
plt.scatter(hours, scores)
plt.title("Study Time vs.

Score")↪→
plt.xlabel("hours studied")
plt.ylabel("score")
plt.show()

Figure 1.3: A scatterplot generated by matplotlib
from the given data.

1.5.5 Histograms and Distributions

A histogram shows how values are distributed and how common different ranges are.

14 Chapter 1. A DEEPER LOOK AT PYTHON SYNTAX

import matplotlib.pyplot as plt
a set of data, for example maybe

these are all test scores↪→
data = [4, 5, 5, 6, 7, 7, 7, 8, 8,

9, 10, 10, 10, 11, 12]↪→
creates a histogram plot
plt.hist(data, bins=5)
plt.title("Histogram of Values")
plt.xlabel("value")
plt.ylabel("frequency")
plt.show()

Figure 1.4: A histogram of a set of data.

1.5.6 The object-oriented approach (recommended)

Matplotlib has two main styles:

• State-based (using plt.plot, plt.title, …): quick and convenient.

• Object-oriented (creating a Figure and Axes): more explicit and easier to scale.

For multi-plot layouts or different analysis of datasets, prefer the object-oriented approach:

import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4, 5]
y1 = [0, 1, 4, 9, 16, 25]
y2 = [0, 1, 8, 27, 64, 125]

two figures, side by side. axes becomes an indexable list
fig, axes = plt.subplots(nrows=1, ncols=2)

axes[0].plot(x, y1)
axes[0].set_title("x^2")
axes[0].set_xlabel("x")
axes[0].set_ylabel("value")

axes[1].plot(x, y2)
axes[1].set_title("x^3")
axes[1].set_xlabel("x")
axes[1].set_ylabel("value")

Section 1.6 ERRORS 15

fig.suptitle("Two Subplots")
fig.tight_layout()
plt.show()

Figure 1.5: The two plots, generated side by side.

1.6 Errors

Even the most experienced programmers can make mistakes. If the code seems to run
into issues, your code may crash or output an error. Python reports errors by raising a halt
in the console output, which include a message explaining the problem and the exact line
where it occurred. By learning how to read and interpret these messages, you’ll be able
to debug, or fix issues, in your programs more efficiently and write more reliable code.

You will encounter two main types of errors in your code: Syntax Errors and Runtime
Errors/Exceptions.

• Syntax errors occur when your the formatting, or syntax. These errors can usually
be found before your code is compiled.

16 Chapter 1. A DEEPER LOOK AT PYTHON SYNTAX

• Runtime Errors, or Exceptions, occur when operations in your code cause an invalid
calculation, or attempt to do an invalid action. These can range anywhere from basic
misnamed variables to imported libraries crashing from incorrect data.

1.6.1 Syntax Errors

What do you notice is immediately wrong with this code?

x = "Welcome Home"
print(type(x)

If we run it, we get the output:

Traceback (most recent call last):
File "<string>", line 1, in <module>
File "/usr/lib/python3.12/py_compile.py", line 150, in compile

raise py_exc
py_compile.PyCompileError: File "./prog.py", line 2

print(type(x)
^

SyntaxError: '(' was never closed

We notice that every opening parentheses, bracket, or brace must have a closing supple-
ment. Without out, we run into Syntax Errors, letting us know our format is off.

Another type of Syntax Error can be found in incorrect indentation. Take for example the
following code:

if True:
print("Hello!")

Output:

Traceback (most recent call last):
File "<string>", line 1, in <module>
File "/usr/lib/python3.12/py_compile.py", line 150, in compile

raise py_exc
py_compile.PyCompileError: Sorry: IndentationError: expected an indented block

after 'if' statement on line 1 (prog.py, line 2)↪→

Here, there is no indentation (usually obtained by pressing the Tab key on your keyboard)
for lines under the conditional statement. This causes a Syntax Error to be raised.

Section 1.6 ERRORS 17

1.6.2 Exceptions

Let’s say I try to run the following code:

print(x)
x = "hello"

You may see the following output:

Traceback (most recent call last):
File "./program.py", line 1, in <module>

NameError: name 'x' is not defined

You have encounted a NameError, because x was not assigned before it was attempted to
be printed. This brings up an important note on Python code: code is executed line-
by-line, sequentially. So even if you define x after you try and print it, Python will not
understand what you are trying to print. Let’s look at another example:

1.6.3 Try-Except

try:
x = int(input("Enter a number: "))
print(10 / x)

except ValueError:
print("Please enter a valid integer.")

except ZeroDivisionError:
print("Cannot divide by zero.")

Here, we attempt to divide 10 by some input number x. There are two Exceptions that
could cause this to fail:

• The user inputs a string a characters, or anything that isn’t an integer

• The user inputs 0, an invalid divisor.

We use a Try-Except block to check for different errors generated, similar to an if statement.
The try block surrounds a block of code that may cause faulty runtime output or errors.

18 Chapter 1. A DEEPER LOOK AT PYTHON SYNTAX

Exercise 5 Fix the Code

.

items = ["pen", "book", "eraser",
"ruler"]↪→

index = input("Enter an index (0 to
3): ")↪→

print("You chose:", items[index])

items.remove("pencil")
print("Updated list:", items)

Name two errors that could occur when
this code is run. For each error, explain
why it occurs and how to fix it.

Answer on Page 20

Working Space

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.

https://kontinua.org/
https://kontinua.org/

Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 4)

The function returns 3 * 2, which is 6, so the program prints:

6

The value of a is still 3 because the function does not change a; it only uses its value to
compute a result.

Answer to Exercise 2 (on page 5)

def is_even(n):
return n % 2 == 0

print(is_even(7))

This prints False because 7 is not divisible by 2.

Answer to Exercise 3 (on page 9)

The initial value is 5. The increment() method is called twice, so the value becomes 7.
The program prints:

7

Answer to Exercise 4 (on page 9)

class Book:

19

20 Chapter A. ANSWERS TO EXERCISES

def __init__(self, title, author):
self.title = title
self.author = author

def __str__(self):
return f"{self.title} by {self.author}"

Answer to Exercise 5 (on page 18)

1. TypeError: The input() function returns a string, so when the user inputs an index,
it is treated as a string. Attempting to use this string as an index for the list will raise
a TypeError. To fix this, we can cast the input to an integer using int() and handle
the potential ValueError if the input is not a valid integer.

2. Pencil is not in the list, so attempting to remove it will raise a ValueError. To fix this,
we can use a try-except block to catch the ValueError and print a message indicating
that the item was not found in the list.

Index

attributes, 6

classes, 5
defining, 5
definition, 5

creating charts in python, see matplotlib

Errors, 15

functions, 1
argument, 2
def, 1
definition, 1
parameter, 2
parameters, 2
return, 2

init, 6

libraries, 10

matplotlib, 11
methods, 7

definition, 7

object-oriented programming, 5
objects, 6

definition, 6

printing objects, 7

scope, 3
syntax errors, 16

try-except, 17

21

	A deeper look at Python syntax
	Where did we leave off?
	Functions
	Defining and Calling a Function
	Parameters and Arguments
	Return Values
	Scope
	Summary

	Classes and More Basic Object-Oriented Programming
	Defining a Class
	Creating Objects
	The __init__ Method
	Accessing Object Attributes
	Methods
	Printing Objects
	Why Use Classes?
	Summary

	Libraries
	Importing Libraries
	Summary

	Matplotlib
	Installing and importing
	A simple line graph
	Labels, legends, and grids
	Visualizing Relationships with scatter plots
	Histograms and Distributions
	The object-oriented approach (recommended)

	Errors
	Syntax Errors
	Exceptions
	Try-Except

	Answers to Exercises
	Index

