
Chapter 1

Introduction to Python

In this chapter we will discuss the very basics of Python. No we are not talking about
snake anatomy, but the programming language Python. Python is a high-level, interpreted
programming language known for its readability and versatility. It is widely used in
various fields such as web development, data analysis, artificial intelligence, scientific
computing, and more. It can be used for data parsing, visualization, and even machine
learning. Python’s syntax is designed to be easy to read and write, making it an excellent
choice for beginners and experienced programmers alike. Throughout this chapter, we
encourage you to write out the provided lines of code yourself! This will reinforce skills
like computer literacy, Python syntax and troubleshooting, and of course, typing speed.

1.1 Getting Started with Python

To get started with Python, you need to have it installed on your computer. You can
download the latest version of Python from the official website: https://www.python.
org/downloads/. Follow the installation instructions for your operating system.

Once you have python installed, you can write and run Python code using various meth-
ods:

• Interactive Shell: You can open a terminal or command prompt and type python or
python3 to start an interactive Python shell where you can type and execute Python
commands line by line.

• Script Files: You can write your Python code in a text file with a .py extension
and run it using the command python filename.py or python3 filename.py in the
terminal.

• IntegratedDevelopment Environments (IDEs): There are several IDEs available for
Python, such as PyCharm, VSCode, and Jupyter Notebooks, which provide a more
user-friendly environment for writing and running Python code. We will assume
you will use VSCode, as it is widely used among computer scientists and devlopers
around the world, and has direct integration to GitHub.

We are going to install VSCode as our IDE for this course. You can download it from
https://code.visualstudio.com/. After installing VSCode, you will also need to install
the Python extension for VSCode, which can be found in the Extensions Marketplace
within VSCode.

1

https://www.python.org/downloads/
https://www.python.org/downloads/
https://code.visualstudio.com/

2 Chapter 1. INTRODUCTION TO PYTHON

1.1.1 The Console and Running Python Programs

When working with Python, it is important to understand the difference between writing
code and executing code. Writing code simply means typing instructions into a file using
a text editor or IDE. Executing code means telling Python to read those instructions and
perform them.

The console, also called the terminal or command prompt, is a text-based interface where you
can run programs and view their output. Any text printed using the print() function will
appear in the console.

When you run a Python program, Python reads your file from top to bottom and executes
each line in order. This is an important idea that will come up often: Python code is
executed sequentially, one line at a time.

1.1.2 Running a Python File

To run a Python file, you must use the console. In VSCode, you can open the integrated
terminal by selecting Terminal → New Terminal from the menu. Make sure your terminal
is open in the same folder as your Python file.

If your file is named hello.py, you can run it by typing:

python hello.py

or, on some systems:

python3 hello.py

After pressing Enter, Python will execute the file and display any output in the console.
If there are errors in your code, Python will stop execution and display an error message
instead. You may also see a green play button at the top of your window, you could also
run your program with that!

At this point, it is helpful to remember:

• Writing code does nothing by itself

• Code only runs when you explicitly execute the file

• Output from print() appears in the console

Section 1.2 OUTPUT PRINT 3

1.2 Output print

Let’s talk more about the print() statement. It can take a string, multiple variables, or a
combination of strings and variables. We are going to introduce the syntax first, and then
expand on the definitions later.

x = "This is a variable."
print("This is a string.", x)

This should output This is a string. This is a variable. You can also do multiple vari-
ables:

x = "Good"
y = "Morning,"
z = "Chicago"
print(x, y, z)

This will output Good Morning, Chicago. Alternatively, printing can have addition within
it:

x = "Good"
y = "Morning,"
z = "Chicago"
print(x+y+z)

This will output GoodMorning,Chicago. Notice the difference!

If you want to combine numbers and strings,

x = "it is"
y=78
z="degrees outside"
print(x+y+z)

This will not work! Instead, we should use commas:

x = "it is"
y=78
z="degrees outside"
print(x, y, z)

This will correctly output “it is 78 degrees outside”

4 Chapter 1. INTRODUCTION TO PYTHON

By default, a space is added in between each argument (where the commas would be).

We can change what seperates each variable by the sep= argument.

x = "it is"
y=78
z="degrees outside"
print(x, y, z, sep="..!..")

This will output it is..!..78..!..degrees outside

By default, Python includes a new line at the end of each print statement. We can alter
this to anything else by using the end= argument:

print("Good Morning, Chicago.", end="!!")

Outputting Good Morning, Chicago.!! to the console, with no new line character inserted.
Note that the next print statement will continue on the same line unless it contains a new
line character.

print("Hello World!", end=" ")
print("I will print on the same line.")

We have used all this terminology like strings and variables a lot, let’s dive a bit deeper
into it!

1.3 Datatypes and Variables

There are many different datatypes in Python, and all of them can be passed to print
function. Here’s the main few:

Strings Strings are just a sequence of characters. Anything closed between quotes gets in-
cluded in the string, such as ”This is the Python Chapter for the Kontinua Sequence!!%&̂×
()-+=1234567890 &”

Integers Integers are any whole number, positive negative or 0. Theoretically, integer
values can go on for infinity, but it is important to understand they take up space in
computer memory.

Floats Floats, or floating point values, are numbers that include decimal places. Division
can be done between integers and floats but may result in a different value.

Booleans Booleans only two values: True or False. The output of conditional statements

Section 1.3 DATATYPES AND VARIABLES 5

(such as if’s or while’s) are booleans. They only answer Yes and No questions, and
are important on deciding between two possible paths in code.

Sequence Types Sequences are consecutive lists or pairs of other data types can be rep-
resented in various froms: list, set, and tuple. Values are accessed by positions.

Mapping Types The main mapping type is a dict, short for dictionary. Mapping types
store values as key–value pairs instead of positions. You access items using a key,
not an index.

Let’s create some of these in our code:

x = 5
y = 5.6
z = True
a = [x, y, z]

A variable is a container for information, usually containing one of the datatypes estab-
lished above. In Python, variables are assigned using the assignment operator =, with the
name of the variable on the left side of the operator and the value it is assigned to on the
right side.

Python has specific naming rules for variables. The name

• Must start with a letter or underscore

• Cannot contain spaces

• Are case-sensitive

In our code above, x is a variable containing the number 5, an Integer. y contains the
float 5.6, while z is a boolean with the value True. We then created a list containing the
variables x, y, and z.

A unique feature of Python is that variables can change their datatypes even after assign-
ment. We can see the datatype of an object using the type()

x = 10
print(x)
print(type(x))

x = "Hello!"
print(x)
print(type(x))

6 Chapter 1. INTRODUCTION TO PYTHON

Output:

10
<class 'int'>
Hello!
<class 'str'>

Notice that, because of that feature, the datatype of a variable is not defined beforehand.
This is a core difference between Python and other programming languages like Java or
C++, which we will explore in the future.

We can also define our floats using scientific notation.

x = 1e3 # 1000.0
y = 2.5e-4 # 0.00025

Exercise 1 Identify the variable type

.Below are 5 variables defined in Python.
Identify their type as str, float, bool,
list, or int by filling in the table below.

a = 10
b = 3.5
c = "10"
d = True
e = [1, 2, 3]

Variable Value Data Type
a 10
b 3.5
c ”10”
d True
e [1, 2, 3]

Answer on Page 25

Working Space

Section 1.4 OPERATIONS 7

Exercise 2 What does this do?

.What is the output of the following code?

print(type(3.0) == type(3))

Answer on Page 25

Working Space

1.4 Operations

Operations can be done on both variables and numbers alike. Most commonly they will
be used for mathematical operations or simplifying operations of equivalence.

1.4.1 Arithmetic Operations

Math operations in Python are very similar to standard math operations. We need them
for any type of data operation or math parsing.

a = 100
b = 3
c = 100.0
d = -100
print(a + b) # addition
print(a - b) # subtraction
print(a * b) # multiplication
print(a / b) # division (results in a float)
print(a % b) # modulus (remainder) operator - useful for division checks
print(a ** b) # exponentiation
print(a // b) # floor division
print(c // b) # floor division as a float
print(d // b) # negative flooring goes further DOWN

Output:

103
97
300
33.333333333333336

8 Chapter 1. INTRODUCTION TO PYTHON

1
1000000
33
33.0
34

Note that division by 0 is not a valid operation, just as in algebra. This will cause an
ZeroDivisionError.

1.4.2 Augmented Assignment Operators

You may want to do the following operation

x = 0
while True:

print(x)
x = x + 1

This would print the counting numbers, increasing by 1, forever. The x = x + 1 rewrites
the value of x equal to the current value of x, and adds one to it. There is a short hand for
this kind of operation, called an augmented assignment operator, which combines assignment
operators and operations. These are commonly used in loops and accumulation counters:

x = 10
x += 5 # same as x = x + 5
x -= 3 # same as x = x - 3
x *= 2 # same as x = 2 * x
x /= 4 # same as x = x / 4

Following order of operations, x = 6 after all lines are executed.

1.4.3 Summary

• Math operations are done with +, -, *, and /

• Augmented Operations +=, -=, *=, /= are common for loops and counting opera-
tions.

Section 1.5 INPUT AND OUTPUT 9

Exercise 3 Tracing Chart

.Let’s create a tracing chart. What hap-
pens after each line of code is run?

n = 5
m = "3"
n = n + 1
m = m + "1"

Line Executed n (value, type) m (value, type)
After line 2
After line 3
After line 4

Answer on Page 25

Working Space

1.5 Input and Output

So far, we have only displayed information using the print() function. While output is
useful, most programs also need a way to receive information from the user. In Python,
this is done using the built-in input() function.

1.5.1 Getting User Input

The input() function pauses the program and waits for the user to type something into
the console. Whatever the user types is then returned and can be stored in a variable.

name = input("Enter your name: ")
print("Hello,", name)

In this example:

• The text inside input() is displayed as a prompt in the console

• The program waits for the user to type a response and press Enter

10 Chapter 1. INTRODUCTION TO PYTHON

• The entered text is stored in the variable name

• The print() function then outputs a greeting using that value

1.5.2 Input Always Returns a String

A very important rule in Python is that input() always returns a string, even if the user
types a number. This means that mathematical operations cannot be performed on input
values unless they are converted to a numeric type.

Consider the following incorrect example:

age = input("Enter your age: ")
print(age + 1)

This code will result in an error, because Python cannot add a number to a string.

To perform calculations, the input must be cast to a different datatype.

1.5.3 Casting Input Values

Casting is the process of converting one datatype into another. Python provides built-in
functions such as int(), float(), and str() for this purpose.

age = int(input("Enter your age: "))
print(age + 1)

Here:

• input() returns a string

• int() converts that string into an integer

• The program can now perform arithmetic operations

1.5.4 Common Input Errors

If the user enters something that cannot be converted to the requested datatype, Python
raises a runtime error called a ValueError. For example:

Section 1.5 INPUT AND OUTPUT 11

age = int(input("Enter your age: "))

If the user types hello instead of a number, Python will produce an error similar to the
following:

ValueError: invalid literal for int() with base 10

This error occurs because the string "hello" cannot be converted into an integer. Handling
these types of errors will be discussed later when we introduce try-except statements.

1.5.5 Summary

• print() is used to display output to the console

• input() is used to receive text input from the user

• input() always returns a string

• Casting is required to convert input into numeric types

Exercise 4 User Input Types

.

x = input("Enter a number: ")
print(x + 5)

What will happen when this code is run
and the user enters 10? If there is an
issue, explain what it is, why it occurs,
and how to fix it.

Answer on Page 25

Working Space

12 Chapter 1. INTRODUCTION TO PYTHON

1.6 Conditionals, Loops, and Match-Case

Most programs need to make decisions and repeat actions. Programmers do not want to
write the same code multiple times, as this introduces redundancy. In Python, this is done
using conditionals and loops. Conditionals allow the program to choose between different
paths of execution, while loops allow code to be run multiple times.

1.6.1 Conditional Statements

Conditional statements execute code only if a given condition is true. Python uses the
keywords if, elif, and else to define these conditions.

x = 10

if x > 0:
print("x is positive")

elif x == 0:
print("x is zero")

else:
print("x is negative")

In this example:

• The expression after if is evaluated as a boolean

• If the condition is True, the indented block runs

• If it is False, Python checks the next condition. The elif block is the only way to
check another branch after one is returned False. The else branch is a last resort,
and only runs if all previous statements are false

• Only one branch of the conditional will execute

It is important to note that indentation is required in Python. All statements belonging
to a conditional block must be indented at the same level.

1.6.2 Boolean Expressions

Conditions are built using comparison and logical operators. These expressions always
evaluate to either True or False.

a = 5

Section 1.6 CONDITIONALS, LOOPS, AND MATCH-CASE 13

b = 10

print(a < b) # less than
print(a == b) # equal to
print(a != b) # not equal to

Logical operators can be used to combine conditions. Condtions can be strung together
using and, or, and not

x = 7

if x > 0 and x < 10:
print("x is between 1 and 9")

if x > 0 or x < -3:
print("x is greater than 0 or less than -3")

y = False
print(not y)

1.6.3 Loops

Loops allow code to be repeated multiple times. Python provides two main types of loops:
for loops and while loops.

To define a loop, Python uses the keywords for and while, followed by a condition or
sequence to iterate over.

• the loop header, with correctly defined endpoints

• a colon :

• an indented block of code to iterate over

1.6.4 For Loops

A for loop is used to iterate over a sequence, such as a list or a range of numbers.

for i in range(5):
print(i)

This code will print the numbers 0 through 4. The range() function generates a sequence

14 Chapter 1. INTRODUCTION TO PYTHON

of integers starting at 0 and stopping before the given value.

numbers = [10, 20, 30]

for n in numbers:
print(n)

1.6.5 While Loops

A while loop repeats as long as a condition remains true.

x = 5

while x > 0:
print(x)
x -= 1

In this example:

• The condition is checked before each iteration

• The loop stops once the condition becomes False

Care must be taken to ensure that the condition eventually becomes false. Otherwise, the
program will enter an infinite loop, one which never stops and the computer will run
forever, risking hardware component issues.

1.6.6 Breaking and Continuing Loops

Python provides keywords to control loop execution.

for i in range(10):
if i == 5:

break
print(i)

The break statement immediately exits the loop.

for i in range(5):

Section 1.6 CONDITIONALS, LOOPS, AND MATCH-CASE 15

if i == 2:
continue

print(i)

The continue statement skips the current iteration and moves to the next one.

1.6.7 Match-Case Statements

Python also provides the match-case statement, which allows a value to be compared
against several possible patterns. This is similar to a switch statement in other program-
ming languages.

command = input("Enter a command: ")

match command:
case "start":

print("Starting program")
case "stop":

print("Stopping program")
case "pause":

print("Pausing program")
case _:

print("Unknown command")

The underscore (_) acts as a default case if no other patterns match.

1.6.8 Summary

• Conditionals allow programs to make decisions

• Boolean expressions evaluate to True or False

• Loops allow code to be repeated efficiently

• for loops iterate over sequences

• while loops repeat based on a condition

• match-case provides a structured way to handle multiple cases

16 Chapter 1. INTRODUCTION TO PYTHON

Exercise 5 Predict the Output

.Fill in the table with the outputs for the
given inputs.

x = int(input("Enter a number: "))

if x > 10:
print("Large")

elif x == 10:
print("Ten")

else:
print("Small")

Input Output
5
10
15

Answer on Page 26

Working Space

Exercise 6 Fill in the Blanks: Loop Edition

.Fill in the following code to print all even
numbers from 0 to 20 (inclusive).

for i in __________:
print(__________)

Answer on Page 26

Working Space

1.7 Lists and Strings

We talked about creating strings, any set of characters between quotes. These can either
be single quotes ' ' or double quotes " ".

Section 1.7 LISTS AND STRINGS 17

Multiline stringsmust be surrounded by three quotations on each side of the text sequence.

a = """Lorem ipsum dolor sit amet,
consectetur adipiscing elit,
sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua."""

Strings are an example of a sequence type, meaning they store values in a specific order
and allow individual elements to be accessed using an index.

1.7.1 Indexing Strings

Each character in a string has a position, called an index. Indexing in Python begins at
0, so the first character is at index 0. Think of it like asking the question for each letter:
“How far from the start is this element?” The first element is zero positions away from
the start, so its index is 0. The last element is always at index n− 1, where n is the length
of string. In memory, all of these characters are stored consecutively.

word = "Python"

print(word[0])
print(word[1])
print(word[5])

Output:

P
y
n

Attempting to access an index that does not exist will result in a runtime error.

1.7.2 Length of a String

The number of characters in a string can be found using the built-in len() function.

word = "Python"
print(len(word))

18 Chapter 1. INTRODUCTION TO PYTHON

Output:

6

1.7.3 Iterating Over Strings

Strings can be iterated over one character at a time using a for loop.

for char in "Hello":
print(char)

This loop runs once for each character in the string.

1.7.4 String Methods

Strings come with built-in functions, called methods, that perform common operations.
These methods are called using dot notation.

text = " Python Programming "

print(text.upper())
print(text.lower())
print(text.strip())

Common string methods include:

• upper() converts all characters to uppercase

• lower() converts all characters to lowercase

• strip() removes leading and trailing whitespace

1.7.5 Lists

A list is another sequence type used to store multiple values in a single variable. Lists are
created using square brackets, with elements separated by commas.

numbers = [1, 2, 3, 4]

Section 1.7 LISTS AND STRINGS 19

Lists can store values of different datatypes, including strings, numbers, booleans, and
even other lists.

data = [10, 3.14, True, "Python"]

1.7.6 Indexing Lists

Like strings, lists are indexed starting at 0.

numbers = [10, 20, 30]

print(numbers[0])
print(numbers[2])

Output:

10
30

For nested lists, you search an indexe using a bracket for every nested list until you reach
the element you are aiming to reach. Later, we will talk about .json files, which are files
essentially comprised of strung-nested lists.

nested_numbers = [0, [1, 2, 3], [4, 5, 6], [7, 8, 9]]

print(numbers[0])
print(numbers[1][2])
print(numbers[2][1])

Output:

0
3
5

20 Chapter 1. INTRODUCTION TO PYTHON

Slicing Strings

You can also use slicing in Python to get all elements between two indices. This syntax is
Python-specific, although there are equivalences in other programming languages. This
syntax works for both lists and strings.

For any sequence, we can slice it or operate on it with the following index notation:

sequence[start : stop : step]

where start is the index to begin at (inclusive), end is the index to end at (exclusive), and
step, an optional argument for how many items to skip.

text = "abcdef"

text[1:4] # 'bcd'
text[:3] # 'abc'
text[3:] # 'def'
text[::2] # 'ace'
text[::-1] # 'fedcba' (reverse string)

The above example slices a string in a few different ways. Let’s look at list slicing:

nums = [0, 1, 2, 3, 4, 5]

nums[2:5] # [2, 3, 4]
nums[:4] # [0, 1, 2, 3]
nums[4:] # [4, 5]
nums[::2] # [0, 2, 4]
nums[::-1] # [5, 4, 3, 2, 1, 0]

Negative indices start from the end, and work the way up the sequence:

text = "python"

text[-3:] # 'hon'
text[:-2] # 'pyth'

Note that setting a variable to a sliced string creates a new string object, while leaving the
original unchanged.

Section 1.7 LISTS AND STRINGS 21

Exercise 7 Mystery Sequence

.What will the code seq[:] output, as-
suming seq = [a, f, j, k] is a valid list?

Answer on Page 26

Working Space

Exercise 8 Computer... Indexing!

.You are given the following code:

word = "computer"

What is the output of each of the follow-
ing expressions?

print(word[0])
print(word[2])
print(word[-1])
print(word[-3])
print(word[3:6])

Answer on Page 26

Working Space

1.7.7 Modifying Lists

Unlike strings, lists are mutable, meaning their contents can be changed after creation.

numbers = [1, 2, 3]
numbers[1] = 10
print(numbers)

Output:

22 Chapter 1. INTRODUCTION TO PYTHON

[1, 10, 3]

1.7.8 List Length and Iteration

The number of elements in a list can be found using the len() function.

numbers = [1, 2, 3]
print(len(numbers))

Lists can be iterated over using a for loop.

numbers = [1, 2, 3]

for n in numbers:
print(n)

1.7.9 Common List Methods

Lists include built-in methods that allow elements to be added or removed.

numbers = [1, 2, 3]
numbers.append(4)
numbers.remove(2)
print(numbers)

Common list methods include:

• append() - adds an element to the end of the list

• remove() - removes the first occurrence of a value

• pop() – removes and returns an element by index

1.7.10 Strings vs Lists

Although strings and lists are both sequence types, there is an important difference be-
tween them.

Section 1.7 LISTS AND STRINGS 23

• Strings are immutable and cannot be modified after creation

• Lists are mutable and can be changed

1.7.11 Summary

• Strings and lists are sequence types

• Indexing starts at 0

• The len() function returns the size of a sequence

• Strings are immutable

• Lists are mutable and support modification

Exercise 9 What’s in your backpack?

.Let’s say the following code is run.

items = ["pen", "book", "eraser"]

items.append("ruler")
items.pop()
items.remove("book")
items.append("marker")

Fill in the following chart with the con-
tents of the items list after each opera-

tion.

Line Execution items content
After Line 1 items = ["pen", "book", "eraser"]
After Line 3
After Line 4
After Line 5
After Line 6

Answer on Page 27

Working Space

24 Chapter 1. INTRODUCTION TO PYTHON

1.8 Is there more?

Of course, there is always something to learn with Python. We are going to do a deeper
dive into functions, classes, and a few useful libraries in the next workbook. For now, this
should be enough to get you started with Python. We will revisit many of these concepts
in later chapters as we build more complex programs.

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.

https://kontinua.org/
https://kontinua.org/

Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 6)

Variable Value Data Type
a 10 int
b 3.5 float
c ”10” str
d True bool
e [1, 2, 3] list

Answer to Exercise 2 (on page 7)

False

Answer to Exercise 3 (on page 9)

Line Executed n (value, type) m (value, type)
After line 2 (5, int) (”3”, str)
After line 3 (6, int) (”3”, str)
After line 4 (6, int) (”31”, str)

Answer to Exercise 4 (on page 11)

The code will raise a TypeError because x is a string and cannot be added to the integer
5. The error message will be similar to:

TypeError: can only concatenate str (not "int") to str

To fix this, we need to cast x to an integer using int():

25

26 Chapter A. ANSWERS TO EXERCISES

x = int(input("Enter a number: "))
print(x + 5)

Answer to Exercise 5 (on page 16)

Input Output
5 Small
10 Ten
15 Large

Answer to Exercise 6 (on page 16)

for i in range(0, 21, 2):
print(i)

Answer to Exercise 7 (on page 21)

The start index is omitted and the end index is omitted, which means they are 0 and
len(seq)= 4 respectively. Since the bounds are 0 and 4 − 1 = 3, every index is included,
in the given order. Therefore, seq[:] returns a copy of the given string, [a, f, j, k]

Answer to Exercise 8 (on page 21)

c
m
r
t
put

27

Answer to Exercise 9 (on page 23)

Line Execution items content
After Line 1 items = ["pen", "book", "eraser"]
After Line 3 items = ["pen", "book", "eraser",

"ruler"]
After Line 4 items = ["pen", "book", "eraser"]
After Line 5 items = ["pen", "eraser"]
After Line 6 items = ["pen", "eraser", "marker"]

28 Chapter A. ANSWERS TO EXERCISES

Index

addition, 7
augmented assignment operator, 8

booleans, 5
break, 14

casting, 10
conditionals, 12

dictionary, 5
division, 7

floats, 4
floor division, 7
for loops, 13

index, 17
input, 9
installing python, 1
integers, 4

loops, 12

match-case, 12, 15
modulus, 7
multiplication, 7

operations, 7

print, 3

sequnce types, 5
string methods, 18

strings, 4, 16
indexing, 17
iterating, 18
length, 17

subtraction, 7

while loops, 14

29

	Introduction to Python
	Getting Started with Python
	The Console and Running Python Programs
	Running a Python File

	Output print
	Datatypes and Variables
	Operations
	Arithmetic Operations
	Augmented Assignment Operators
	Summary

	Input and Output
	Getting User Input
	Input Always Returns a String
	Casting Input Values
	Common Input Errors
	Summary

	Conditionals, Loops, and Match-Case
	Conditional Statements
	Boolean Expressions
	Loops
	For Loops
	While Loops
	Breaking and Continuing Loops
	Match-Case Statements
	Summary

	Lists and Strings
	Indexing Strings
	Length of a String
	Iterating Over Strings
	String Methods
	Lists
	Indexing Lists
	Modifying Lists
	List Length and Iteration
	Common List Methods
	Strings vs Lists
	Summary

	Is there more?

	Answers to Exercises

