
Chapter 1

Interpolating with Polynomials

Let’s say someone on a distant planet records video of a hammer being throw up into
the air. They send you three random frames of the hammer in flight. Each frame has a
timestamp and you can clearly see how high the hammer is in each one. Can you create
a 2nd degree polynomial that explains the entire flight of the hammer?

That is, you have three points (t0, h0), (t1, h1), (t2, h2). Can you find a, b, c such that the
graph of at2 + bt+ c = t passes through all three points?

The answer is yes. In fact, given any n points, there is exactly one n−1 degree polynomial
that passes through all the points.

There are a lot of variables floating around. Let’s make it concrete: The photos are taken
at t = 2 seconds, t = 3 seconds, and t = 4 seconds. In those photos, the height of the
hammer is 5m, 7m, and 6m. So, we want our polynomial to pass through these points:
(2, 5), (3, 7), (4,6).

How can you find that polynomial? Let’s do it in small steps. Can you create a 2nd
degree polynomial that is not zero at t = 2, but is zero at t = 3 and t = 4? Yes, you can:
(x−3)(x−4) has exactly two roots at t = 3 and t = 4. The value of this polynomial at t = 2

is (2 − 3)(2 − 4) = 2. We really want it to be 5m, so we can divide the whole polynomial
by 2 and multiply it by 5.

Now we have the polynomial:

f0(x) =
5

(2− 3)(2− 4)
(x− 3)(x− 4) =

5

2
x2 −

35

2
x+ 30

1

2 Chapter 1. INTERPOLATING WITH POLYNOMIALS

This is a second degree polynomial that is 5 at t = 2 and 0 at t = 3 and t = 4.

Now we create a polynomial that is 7 at t = 3 and 0 at t = 2 and t = 4:

f1(x) =
7

(3− 2)(3− 4)
(x− 2)(x− 4) = −7x2 + 42x− 56

Finally, we create a polynomial that is 6 at t = 4 and zero at t = 2 and t = 3:

f2(x) =
6

(4− 2)(4− 3)
(x− 2)(x− 3) = 3x2 − 15x+ 18

Adding these three polynomials together gives you a new polynomial that touches all
three points:

f(x) =
5

2
x2 −

35

2
x+ 30− 7x2 + 42x− 56+ 3x2 − 15x+ 18 = −

3

2
x2 +

19

2
x− 8

You can test this with your Polynomial class. Create a file called test_interpolation.py.
Add this code:

from Polynomial import Polynomial
import matplotlib.pyplot as plt

in_x = [2,3,4]
in_y = [5,7,6]

pn = Polynomial([-8, 19/2, -3/2])
print(pn)

These lists will hold our x and y values
x_list = []
y_list = []

Starting x
current_x = 1.5

while current_x <= 4.5:
Evaluate pn at current_x
current_y = pn(current_x)

Add x and y to respective lists
x_list.append(current_x)
y_list.append(current_y)

Section 1.1 INTERPOLATING POLYNOMIALS IN PYTHON 3

Move x forward
current_x += 0.05

Plot the curve
plt.plot(x_list, y_list)

Plot black circles on the given points
plt.plot(in_x, in_y, "ko")
plt.grid(True)
plt.show()

You should get a nice plot that shows the graph of the polynomial passing through those
three points.

In general, then, if you give me any three points (t0, h0), (t1, h1), (t2, h2), here is a second
degree polynomial that pass through all three points:

h0

(t0 − t1)(t0 − t2)
(x−t1)(x−t2)+

h1

(t1 − t0)(t1 − t2)
(x−t0)(x−t2)+

h2

(t2 − t0)(t2 − t1)
(x−t0)(x−t1)

What if you are given 9 points ((t0, h0), (t1, h1), . . . , (t8, h8)) and want to find a 8th degree
polynomial that passes through all of them? Just what you would expect:

h0

(t0 − t1)(t0 − t2) . . . (t0 − t8)
(x−t1)(x−t2) . . . (x−t8)+. . .+

h8

(t8 − t0) . . . (t8 − t7)
(x−t0) . . . (x−t7)

FIXME: Do I need to define summation and prod here?

The general solution is, given n points, the n − 1 degree polynomial that goes through
them is

y =

n∑
i=0

 ∏
0≤j≤n

j6=i

x− tj

ti − tj

hi

That would be tedious for a person to compute, but computers love this stuff. Let’s create
a method that creates instances of Polynomial using interpolation.

1.1 Interpolating polynomials in python

Your method will take two lists of numbers, one contains x-values and the other contains
y-values. So comment out the line that creates the polynomial in test_interpolation.py
and create it from two lists:

4 Chapter 1. INTERPOLATING WITH POLYNOMIALS

in_x = [2,3,4]
in_y = [5,7,6]
pn = Polynomial([-8, 19/2, -3/2])
pn = Polynomial.from_points(in_x, in_y)
print(pn)

Add the following method to your Polynomial class in Polynomial.py

@classmethod
def from_points(cls, x_values, y_values):

coef_count = len(x_values)

Sums start with a zero polynomial
sum_pn = Polynomial([0.0] * coef_count)
for i in range(coef_count):

Products start with the constant 1 polynomial
product_pn = Polynomial([1.0])
for j in range(coef_count):

Must skip j=i
if j != i:

(1x - x_values[j]) has a root at x_values[j]
factor_pn = Polynomial([-1 * x_values[j], 1])
product_pn = product_pn * factor_pn

Scale so product_pn(x_values[i]) = y_values[i]
scale_factor = y_values[i] / product_pn(x_values[i])
scaled_pn = scale_factor * product_pn

Add it to the sum
sum_pn = sum_pn + scaled_pn

return sum_pn

It should work exactly the same as before. You should get the same polynomial printed
out as before. You shoud get the same plot of the curve passing through the three points.

How about five points? Change in_x and in_y at the start of test_interpolation.py:

in_x = [1.7, 2, 2.7, 3.5, 4, 4.4]
in_y = [8, 12, 1, 4, -1, 6]

Section 1.1 INTERPOLATING POLYNOMIALS IN PYTHON 5

You should get a polynomial that passes through all five points:

11.21x5 − 171.05x4 + 1019.44x3 − 2957.53x2 + 4161.78x− 2258.75

It should look like this:

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.

https://kontinua.org/
https://kontinua.org/

Appendix A

Answers to Exercises

7

8 Chapter A. ANSWERS TO EXERCISES

	Interpolating with Polynomials
	Interpolating polynomials in python

	Answers to Exercises

