
Chapter 1

Double Integrals Over
Non-Rectangular Regions

Now that we’ve seen how to evaluate double integrals over rectangular regions, let’s con-
sider non-rectangular regions. Suppose we are interested in the integral of a function,
f(x, y), over a region, D, exists such that it can be bounded by inside a rectangular region,
R (see figure 1.1). We can then define a new function:

F(x, y) =

{
f(x, y) if (x, y) is in D
0 if (x, y) is in R but not in D

x

y

D

x

y

D

R

Figure 1.1: We can find a rectangular region, R, that completely encloses D

Then, we can see that: ∫∫
D
f(x, y)dA =

∫∫
R
F(x, y)dA

Which makes sense intuitively, since integrating over F outside of D doesn’t contribute
anything to the integral, and the integral of F inside D is equal to the integral of f inside
D. In general, there are two types of regions for D. A region is type I if it lies between two
continuous functions of x and can be defined thusly:

D = {(x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}

Some type I regions are shown in figure 1.2. To evaluate
∫∫

D f(x, y)dA, we begin by
choosing a rectangle R = [a, b]× [c, d] such that D is completely contained in R. We again
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a b

y = g2(x)

y = g1(x)

D

x

y

a b

y = g2(x)

y = g1(x)

D

x

y

Figure 1.2: Two examples of type I domains
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define F(x, y) such that F(x, y) = f(x, y) on D and F = 0 outside of D. Then, by Fubini’s
theorem: ∫∫

D
f(x, y)dA =

∫∫
R
F(x, y)dA =

∫b
a

∫d
c

F(x, y)dydx

Since F(x, y) = 0 when y ≤ g1(x) or y ≥ g2(x), we know that:∫d
c

F(x, y)dy =

∫g2(x)
g1(x)

F(x, y)dy =

∫g2(x)
g1(x)

f(x, y)dy

Substituting this into the iterated integral above, we see that for a type I region D =
{(x, y) | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)},∫∫

D
f(x, y)dA =

∫b
a

∫g2(x)
g1(x)

f(x, y)dydx

Another way to visualize the double integral over a type I region is shown in figure 1.3.
For any value of x ∈ [a, b], we know that g1(x) ≤ y ≤ g2(x). The inner integral represents
moving along one blue line from y = g1(x) to y = g2(x) and integrating with respect to
y. Then, for the outer integral, we integrate with respect to x, which is represented by
moving the line from x = a to x = b.

a b

y = g2(x)

y = g1(x)

D

x1 x2 x3

x

y

Figure 1.3: On type I domains, for a given value of x, g1(x) ≤ y ≤ g2(x)

A type II region is a region such that we can define the limits of x in terms of y (see figure
1.4). That is, a type II region can be defined as:

D = {(x, y) | c ≤ y ≤ d, h1(y0 ≤ x ≤ h2(y)}

And in a similar manner to above, we can show that:∫∫
D
f(x, y)dA =

∫d
c

∫h2(y)

h1(y)
f(x, y)dxdy
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a

b

x = h2(x)

x = h1(x)

D

x

y

a

b

x = h2(x)

x = h1(x)
D

x

y

Figure 1.4: Two examples of type II domains
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You can annotate type II regions with horizontal lines to show that, for a given y values,
all x values in the region are contained in h1(y) ≤ x ≤ h2(y) (see figure 1.5).

a

b

x = h2(x)

x = h1(x)

D

y3

y2

y1
x

y

Figure 1.5: On type II domains, for a given value of y, h1(y) ≤ x ≤ h2(y)

1.1 Determining Region Type

Many regions can be described as either type I or type II. Consider the region between
the curves y = 3

2(x − 1) and y = 1
2(x − 1)2 (see figure 1.6).[fix me classifying domains

examples and explanations]

y = (x−1)2

2

y = 3(x−1)
2

(4, 4.5)

(1, 0)

x

y

Figure 1.6: The region that lies between y = (x−1)2

2 and y = 3(x−1)
2 can be classified as type

I or type II

Example: Evaluate
∫∫

D(2x + y)dA, where D is the region bounded by the parabolas
y = 3x2 and y = 2+ x2. Region D is shown in figure 1.7.

Solution:This is a type I region, since for a given x, y ∈
[
3x2, 2+ x2

]
. We can define region
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−1 −0.5 0.5 1

1

2

3

4

Figure 1.7: Region D is bounded above by y = 2+ x2 and below by y = 3x2

D as D = {(x, y) | − 1 ≤ x ≤ 1, 3x2 ≤ y ≤ 2+ x2}. Therefore,∫∫
D
(2x+ y)dA =

∫ 1
−1

∫ 2+x2

3x2
(2x+ y) dydx

=

∫ 1
−1

[∫ 2+x2

3x2
2xdy+

∫ 2+x2

3x2
ydy

]
dx

=

∫ 1
−1

[
2xy|

y=2+x2

y=3x2
+

1

2
y2|

y=2+x2

y=3x2

]
dx

=

∫ 1
−1

[
2x

(
2+ x2 − 3x2

)
+

1

2

(
(2+ x2)2 − (3x2)2

)]
dx

=

∫ 1
−1

[
2+ 4x+ 2x2 − 4x3 − 4x4

]
dx

=

[
2x+ 2x2 +

2

3
x3 − x4 −

4

5
x5
]x=1

x=−1

=

(
2+ 2+

2

3
− 1−

4

5

)
−

(
−2+ 2−

2

3
− 1+

4

5

)
= 4+

4

3
−

8

5
=

56

15
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Exercise 1 Double Integrals over Non-Rectangular Regions

.Evaluate the double integral.

1.
∫∫

D e−y2
dA, D = {(x, y) | 0 ≤ y ≤

3, 0 ≤ x ≤ 2y}.

2.
∫∫

D x sinydA,D is bounded by y =
0, y = x2, x = 2.

3.
∫∫

D (2y− x) dA, D is bounded by
the circle with center at the origin
and radius 3.

Answer on Page 15

Working Space

1.2 Double Integrals in Other Coordinate Systems

Consider a region composed of a semi-circular ring (see figure ??). Describing the re-
gion in Cartesian coordinates is complicated: you would have to split it into 3 regions
(see figure ...). However, in polar coordinates, we can describe the whole region in one
statement:

D = {(r, θ) | 1 ≤ r ≤ 4, 0 ≤ θ ≤ π}

There are many instances where a region is simpler to describe in polar coordinates, so
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−4 −2 2 4

2

4

x

y

Figure 1.8: A semi-circular ring

how do we take double integrals in polar coordinates? Suppose we want to integrate some
function, f(x, y), over a polar rectangle described by D = {(r, θ) | a ≤ r ≤ b, α ≤ θ ≤ β}

(see figure 1.9). Similar to Cartesian coordinates, we can divide this region in to many
smaller polar rectangles, with each subrectangle defined by Dij = {(r, θ) | ri−1 ≤ r ≤
ri, θi−1 ≤ θ ≤ θi}. And the center of each subrectangle has polar coordinates (r∗i , θ

∗
j ),

where:
r∗i −

1

2
(ri−1 + ri)

θ∗j =
1

2
(θj−1 + θj)

1 2 3 4

1

2

3

4

θ = β

θ = α

α
β

r = a

r = b

x

y

Figure 1.9: A polar rectangle described by D = {(r, θ) | a ≤ r ≤ b, α ≤ θ ≤ β}

Each subrectangle is a larger radius sector minus a smaller radius sector, each with the
same central angle, ∆θ = θj − θj−1. Then the total area of each subrectangle is given by:

∆Ai =
1

2
(ri)

2 δθ−
1

2
(ri−1)

2∆θ =
1

2

(
r2i − r2i−1

)
∆θ

Substituting
(
r2i − r2i−1

)
= (ri + ri−1) (ri − ri−1), we see that:

∆Ai =
1

2
(ri + ri−1) (ri − ri−1)∆θ
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Recall that we have defined r∗i = 1
2 (ri−1 + ri). Additionally, ∆r = ri − ri−1. Substituting

this, we find a simplified expression for the area of each subrectangle:

∆Ai = r∗i∆r∆θ

And therefore the Riemann sum of f(x, y) over the region is:
n∑
i=1

n∑
j=1

f(r∗i cos θ∗j , r∗i sin θ∗j )∆Ai

(Recall that to convert from Cartesian to polar coordinates, we use x = r cos θ and y =
r sin θ). Substituting for δAi:

=

n∑
i=1

n∑
j=1

f(r∗i cos θ∗j , r∗i sin θ∗j )r
∗
i∆r∆θ

Taking the limit as n → ∞, the Riemann sum becomes the double integral:∫β
α

∫b
a

f(r cos θ, r sin θ)r dr dθ

And therefore, if f is continuous on the polar rectangle a ≤ r ≤ b, α ≤ θ ≤ β, then:∫∫
D
f(x, y)dA =

∫β
α

∫b
a

f(r cos θ, r sin θ)r dr dθ

Example: Evaluate
∫∫

D x2ydA, where D is the semi-circle shown below.

−4 −2 2 4

2

4

D

x

y

Solution: Since the region is a semi-circle with radius 5, we can describe D as D =
{(r, θ) | 0 ≤ r ≤ 5, 0 ≤ θ ≤ π}. Therefore,∫∫

D
x2ydA =

∫π
0

∫ 5
0

(r cos θ)2 (r sin θ) r dθdr
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=

∫π
0

∫ 5
0

r4 cos2 θ sin θdr dθ

=

∫π
0

cos2 θ sin θ

[
1

5
r5
]r=5

r=0

dθ

=

∫π
0

cos2 θ sin θ
55

5
dθ = 625

∫π
0

cos2 θ sin θdθ

Using u-substitution, let u = cos θ. Then −du = sin θdθ and therefore:

625

∫π
0

cos2 θ sin θdθ = 625

∫θ=π

θ=0

−u2 du

= −625
1

3
u3|θ=π

θ=0 = −625
1

3

(
cos3 θ

)
|θ=π
θ=0

= −
625

3

[
(−1)3 − (1)3

]
= −

625

3
(−2) =

1250

3
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Exercise 2 Changing to Polar Coordinates

.Evaluate the following iterated integrals
by converting to polar coordinates:

1.
∫2
0

∫√4−x2

0 e−x2−y2
dydx

2.
∫1/2
0

∫√1−y2
√
3y

xy2 dxdy

3.
∫2
0

∫√2x−x2

0

√
x2 + y2 dydx

Answer on Page 15

Working Space
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Exercise 3 Using Polar Coordinates in Multiple Integration

.

Find the volume of the solid that lies un-
der the surface z = 4−x2−y2 and above
the xy-plane.

Answer on Page 17

Working Space
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Exercise 4 The volume of a pool

.A circular swimming pool has a 40-ft di-
ameter. The depth of the pool is constant
along the north-south axis and increases
from 3 feet at the west end to 10 feet at
the east end. What is the total volume of
water in the pool?

Answer on Page 18

Working Space

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.

https://kontinua.org/
https://kontinua.org/




Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 7)

1.
∫∫

D e−y2
dA =

∫3
0

∫2y
0 e−y2

dxdy =
∫3
0

[
e−y2

x|
x=2y
x=0

]
dy =

∫3
0 2ye

−y2
dy = −e−y2

|
y=3
y=0 =

1− e−9 ≈ 0.9999

2.
∫∫

D x sinydA =
∫2
0

∫x2
0 x sinydydx =

∫2
0 x

∫x2
0 sinydydx =

∫2
0 x [− cosy]y=x2

y=0

=
∫2
0 x

(
cos 0− cos x2

)
dx=

∫2
0

(
x− x cos x2

)
dx=

[
1
2x

2 − 1
2 sin x2

]x=2

x=0
= 1

2(2)
2− 1

2

(
sin 22 − sin 0

)
= 2− 1

2 (sin 4− 0) = 2− sin 4
2 ≈ 2.378

3. We can describe the region as D = {(x, y) | − 3 ≤ x ≤ −3,−
√
9− x2 ≤ y ≤

√
9− x2}.

Therefore,
∫∫

D (2y− x) dA =
∫3
−3

∫√9−x2

−
√
9−x2

(2x− y) dydx=
∫3
−3

[
2xy− 1

2y
2
]y=√

9−x2

y=−
√
9−x2

dx

=
∫3
−3

[
2x

(√
9− x2 +

√
9− x2

)
− 1

2

(
9− x2 −

(
9− x2

))]
dx =

∫3
−3 4x

√
9− x2 dx. Let

u = 9 − x2, then du = −2x and 4x = −2du. Substituting,
∫3
−3 4x

√
9− x2 dx =∫x=3

x=−3−2
√
udu = −2 · 2

3u
3/2|x=3

x=−3 = − 4
3

[(
9− x2

)]x=3

x=−3
= 0

Answer to Exercise 2 (on page 11)

1. Let’s visualize the region in the xy-plane:

2

2

x

y

The region is a quarter-circle that can be described with D = {(r, θ) | 0 ≤ r ≤ 2, 0 ≤

15
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θ ≤ π/2}. Then we can re-write the integral in polar coordinates:∫ 2
0

∫√4−x2

0

e−x2−y2

dydx =

∫π/2
0

∫ 2
0

re−r2 drdθ

=

∫π/2
0

[
−
1

2
e−r2

]r=2

r=0

dθ =

∫π/2
0

(
−
1

2

)[
e−4 − 1

]
dθ

=
1

2

∫π/2
0

1− e−4 dθ =
1

2

(
1−

1

e4

) ∫π/2
0

1 dθ

=
1

2

(
1−

1

e4

)
θ|

θ=π/2
θ=0 =

π

4

(
1−

1

e4

)
2. The region is bounded by the x-axis, the line y = x/

√
3, and the circle x2 + y2 = 1:

1

(
√
3
2 , 12)

x

y

We see that the region defined in polar coordinates is D = {(r, θ) | 0 ≤ r ≤ 1, 0 ≤
θ ≤ π/6} . And therefore:∫ 1/2

0

∫√1−y2

√
3y

xy2 dxdy =

∫π/6
0

∫ 1
0

r (r cos θ) (r sin θ)2 drdθ

=

∫π/6
0

[
cos θ sin2 θ

]
dθ ·

∫ 1
0

r4 dr

=

(
1

3
sin3 θ|

θ=π/6
θ=0

)
·
(
1

5
r5|r=1

r=0

)

=
1

15
·
(
1

2

)3

=
1

120

3. Visualizing the region:
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1 2

1

x

y

We see that the region is the top half of a circle of radius 1 centered at (1, 0). In
polar coordinates, this region is D = {(r, θ) | 0 ≤ r ≤ 2 cos θ, 0 ≤ θ ≤ π/2}. And
therefore: ∫ 2

0

∫√2x−x2

0

√
x2 + y2 dydx =

∫π/2
0

∫ 2 cos θ
0

r
√
r2 drdθ

=

∫π/2
0

∫ 2 cos θ
0

r2 drdθ =

∫π/2
0

1

3

[
r3
]r=2 cos θ

r=0
dθ

=
8

3

∫π/2
0

cos3 θdθ =
8

3

∫π/2
0

cos θ
(
1− sin2 θ

)
dθ

=
8

3

[∫π/2
0

cos θdθ−

∫π/2
0

cos θ sin2 θdθ

]

=
8

3

[
(sin θ)

θ=π/2
θ=0 −

(
1

3
sin3 θ

)θ=π/2

θ=0

]

=
8

3

[
(1− 0) −

1

3

(
13 − 03

)]
=

8

3
· 2
3
=

16

9

Answer to Exercise 3 (on page 12)

We are finding the volume of the solid that lies under the surface z = 4 − x2 − y2 and
above the xy-plane.
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We can use polar coordinates to simplify the double integral. In polar coordinates, x =
r cos(θ) and y = r sin(θ), so x2 + y2 = r2. The volume under the surface and above the
xy-plane is given by

V =

∫ ∫
(4− r2)r dr dθ, (1.1)

where r ranges from 0 to 2 (since 4− r2 ≥ 0 if 0 ≤ r ≤ 2) and θ ranges from 0 to 2π.

Hence,

V =

∫ 2π
0

∫ 2
0

(4r− r3)drdθ

=

∫ 2π
0

[
2r2 −

1

4
r4
]2
0

dθ

=

∫ 2π
0

(8− 4)dθ

=

∫ 2π
0

4 dθ

= [4θ]2π0
= 8π.

So the volume of the solid is 8π cubic units.

Answer to Exercise 4 (on page 13)

Let’s describe the footprint of the pool as a 20-foot radius circle centered at the origin
(that is, a region D= {(r, θ) | 0 ≤ r ≤ 20, 0 ≤ θ ≤ 2π}). Further, let’s take north-south as
parallel to the y-axis and east-west as parallel to the x-axis. Then the depth of water is
then given by z = f(x, y) = 7

40x + 13
2 over the footprint of the pool. And the total volume

of water is given by: ∫ 2π
0

∫ 20
0

r

(
7

40
r cos θ+

13

2

)
drdθ

=

∫ 2π
0

∫ 20
0

[
7

40
r2 cos θ+

13

2
r

]
drdθ

=

∫ 2π
0

[
7 cos θ
40

∫ 20
0

r2 dr+
13

2

∫ 20
0

r dr

]
dθ

=

∫ 2π
0

[
7 cos θ
40

(
1

3
r3
)r=20

r=0

+
13

2

(
1

2
r2
)r=20

r=0

]
dθ
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=

∫ 2π
0

[
1400

3
cos θ+ 1300

]
dθ =

[
1400

3
sin θ+ 1300θ

]θ=2π

θ=0

= 2600π cubic feet
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