CHAPTER |

Double Integrals Over
Non-Rectangular Regions

Now that we’ve seen how to evaluate double integrals over rectangular regions, let’s con-
sider non-rectangular regions. Suppose we are interested in the integral of a function,
f(x,y), over a region, D, exists such that it can be bounded by inside a rectangular region,
R (see figure 1.1). We can then define a new function:

F(x )_ f(X>U) if (X,y) isin D
S 0 if (x,y) is in R but not in D

Figure 1.1: We can find a rectangular region, R, that completely encloses D

Then, we can see that:

”D f(x,y) dA = ”R F(x,y) dA

Which makes sense intuitively, since integrating over F outside of D doesn’t contribute
anything to the integral, and the integral of F inside D is equal to the integral of f inside
D. In general, there are two types of regions for D. A region is type I if it lies between two
continuous functions of x and can be defined thusly:

D={xy)la<x<b,gi(x) <y < ga(x)}

Some type I regions are shown in figure 1.2. To evaluate [[,f(x,y)dA, we begin by
choosing a rectangle R = [a, b] x [c, d] such that D is completely contained in R. We again
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y
Yy = g2(x)
D
| y=gix) |
a b
y
y = g2(x)
| y = gi(x) X
a b

Figure 1.2: Two examples of type I domains
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define F(x,y) such that F(x,y) = f(x,y) on D and F = 0 outside of D. Then, by Fubini’s
theorem:

[ aran= ] rsion=[ [ risrane

aJc

Since F(x,y) =0 when y < g;(x) or y > g2(x), we know that:

92(x)

d g2(x)
J F(x,y)dyzj F(x,y)dy=J f(x,y) dy
c g1(x) g1(x)

Substituting this into the iterated integral above, we see that for a type I region D =
vyl la<x<b,gix) <y < galx)},

”D f(x,y) dA = Jb JQZ(X) f(x,y) dy dx

a Jgi(x)

Another way to visualize the double integral over a type I region is shown in figure 1.3.
For any value of x € [a, b], we know that g1(x) <y < g»(x). The inner integral represents
moving along one blue line from y = gi1(x) to y = g2(x) and integrating with respect to
y. Then, for the outer integral, we integrate with respect to x, which is represented by
moving the line from x = a to x = b.

Yy
y = g2(x)
\
[ D ‘
L ‘ / l
B Y=ol 0«
ax; X X3 b

Figure 1.3: On type I domains, for a given value of x, g1(x) <y < g2(x)

A type Il region is a region such that we can define the limits of x in terms of y (see figure
1.4). That is, a type II region can be defined as:

D={(xy)lc<y<dhyo<x<hy(y)}

And in a similar manner to above, we can show that:

toodn= [ [ty dxdy
D

c Jhi(y)
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x = hy(x)

Figure 1.4: Two examples of type II domains
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You can annotate type II regions with horizontal lines to show that, for a given y values,
all x values in the region are contained in h;(y) < x < hy(y) (see figure 1.5).

Yy
Us::ﬁ -
Y |-- D -
x = hy(x)
X:M,
Yrp-------- -
al-------- X

Figure 1.5: On type II domains, for a given value of y, hy(y) < x < hy(y)

1.1 Determining Region Type

Many regions can be described as either type I or type II. Consider the region between
the curves y = %(x —1)and y = %(x —1)? (see figure 1.6).[fix me classifying domains

examples and explanations]

Y

Figure 1.6: The region that lies between y = @ and y = =5— can be classified as type

3(x—1)

I or type II

Example: Evaluate [[,(2x 4+ y)dA, where D is the region bounded by the parabolas
y =3x? and y = 2 + x*. Region D is shown in figure 1.7.

Solution:This is a type I region, since for a given x, y € [37(2, 2+ xz] . We can define region
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1 05 0.5 1

Figure 1.7: Region D is bounded above by y = 2 + x* and below by y = 3x?

DasD ={(x,y) | —1<x< 1,3x? <vy < 2+ x2}. Therefore,

”D(Zx +y)dA = r JHXZ (2x +y) dy dx

—1J3x2

1 24-x2 24-x2
= J J 2x dy + J ydy| dx
-1 [J3x2 3x2

1
=24x2 1 =2+4x?2
- J1 [2xy|3_3; + 2926:3?:2 } dx

_ J]] [Zx (z 12— 3x2> + % ((2 ) - (SXZ)Z)} dx

1
:J [z+4x+zx2—4x3 —4x4} dx
—1

x=1
2x + 2x? +2 x4—ix5
5 x=—1

4 4
242 7—1—7 -2 2—7—
(+ T 5) ( " 1+5)

L8

375
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Exercise 1 Double Integrals over Non-Rectangular Regions

) —————— Working Space ———
Evaluate the double integral. ‘

L [[pe v dA, D ={(x,y) |0 <y <
3,0 <x <2yl

2. [[pxsinydA, Disbounded by y =
0,y=x?x=2

3. J[p(2y —x) dA, D is bounded by
the circle with center at the origin
and radius 3.

Answer on Page 15 J

1.2 Double Integrals in Other Coordinate Systems

Consider a region composed of a semi-circular ring (see figure ??). Describing the re-
gion in Cartesian coordinates is complicated: you would have to split it into 3 regions
(see figure ...). However, in polar coordinates, we can describe the whole region in one
statement:

D={r0)]1<r<4,0<06<m

There are many instances where a region is simpler to describe in polar coordinates, so
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N

4 2 2 4

Figure 1.8: A semi-circular ring

how do we take double integrals in polar coordinates? Suppose we want to integrate some
function, f(x,y), over a polar rectangle described by D = {(1,0) |a <1 <b, « <0 < 3}
(see figure 1.9). Similar to Cartesian coordinates, we can divide this region in to many
smaller polar rectangles, with each subrectangle defined by Dy = {(1,0) [1i1 < v <
T, i1 < 0 < 0i). And the center of each subrectangle has polar coordinates (r}, 9;‘),
where:

TP — 7 (Tic1 +711)
R
0 =5 (651 +6;)
4 .
y

Figure 1.9: A polar rectangle described by D ={(1,0) [a <r <b, o <0 < 3}

Each subrectangle is a larger radius sector minus a smaller radius sector, each with the
same central angle, AO = 0; — 0;_1. Then the total area of each subrectangle is given by:

1 1 |
AA; = 3 ()% 50 — 7 (rio1)2 A0 = 3 (Tf - Tizq) A8

Substituting (v7 — 17 ;) = (ty +Ti_1) (1; — Ti_1), we see that:

1

AAy = 5 (i 7o) (i —Ti1) AD
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Recall that we have defined 1} = ]j (ri—1 +11). Additionally, Ar = r; — ri_j. Substituting

this, we find a simplified expression for the area of each subrectangle:

AA; =17 ATAB

And therefore the Riemann sum of f(x,y) over the region is:

n n
ZZfr cos 05, 17 sin 0 ) AA;

i=1 j=

—_

(Recall that to convert from Cartesian to polar coordinates, we use x = rcos6 and y =
rsin0). Substituting for dA;:

n
Zf i cos E)J*,r1 sin 0] )r{ ArAO
1 j=1

Il
M-

o
Il

Taking the limit as n — oo, the Riemann sum becomes the double integral:

B (b
J J f(rcos B, rsin®)rdrdo

x Ja
And therefore, if f is continuous on the polar rectangle a <r <b, « <0 < f3, then:

B (b
” f(x,y)dA—J J f(rcosB, rsin0)r dr do
D

x Ja

Example: Evaluate HD xzy dA, where D is the semi-circle shown below.

—4 =2 2 4
Solution: Since the region is a semi-circle with radius 5, we can describe D as D =

{(r,0) |0 <r <5, 0<0 < Therefore,

T 5
” x*y dA:J J (rcose)2 (rsin@)rdodr
D 0Jo
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7T 5
:J J * cos? 0sin O dr dO
0 Jo

7T ] r=5
= J cos? 0 sin 0 [rf’} do
0 5 =0

s 55 7T
= J cos? 0 sin Gg do = 625J cos? 0sin 0 dO
0 0

Using u-substitution, let u = cos 6. Then —du = sin 6d0 and therefore:

7T 0=t
625J cos?0sin 0 do = 625 J —u?du
0 0=0

1 310=m 1 3 0=m
= —625 Ui = 625 (cos*0) 13
&2 625 ) 1250

=2 [P -] =S =55
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Exercise 2 Changing to Polar Coordinates

Working Space
Evaluate the following iterated integrals
by converting to polar coordinates:

12V ey gy dx

1/2 v/ 1—y2
2J"/J‘\/§yy

0

3. f(z) 5 2 XT+yl dy dx

xy? dx dy

\— Answer on Page 15 Q
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Exercise 3 Using Polar Coordinates in Multiple Integration

’— Working Space ———

Find the volume of the solid that lies un-
der the surface z = 4 —x* —y? and above
the xy-plane.

‘— Answer on Page 17 —l
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Exercise 4 The volume of a pool
) , ) _ Working Space

A circular swimming pool has a 40-ft di- ‘

ameter. The depth of the pool is constant

along the north-south axis and increases

from 3 feet at the west end to 10 feet at

the east end. What is the total volume of

water in the pool?

\— Answer on Page 18 4

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.
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APPENDIX A

Answers to Exercises

Answer to Exercise 1 (on page 7)

L [fpe ¥ dA = [3 [ e’ dxdy = [3 [e Vx| ay = [2ye ¥ dy = —e VI =
1—e ¥ ~0.9999

2. [[pxsinydA = [? fgz xsiny dy dx = [3 ngz siny dy dx = [3x[— cosy]gigz
= fg x (cos 0 — cos x?) dx = fg (x —xcosx?) dx = [3x* — J sinx?] zj 1(2)2—1 (sin2? —sin0)
=2—1(sin4—0)=2—:504 ~ 2378

3. We can describe the region as D ={(x,y) | =3 <x < -3,—V9—x? <y < V9 —x%}
Therefore, [[ (2y —x) dA = N (2x —y) dydx= >, [2xy — ! 2=V
+JIpley —Xx —Laf_@ x—y) dy X—Ls[X‘J 2Y ]y:ﬂ/ﬁ X

= [, [Zx (\/9—x2+\/9—x2> —1(9-x - (9—x2))] dx = [?4xv/9 —xZdx. Let

u = 9 —x% then du = —2x and 4x = —2du. Substituting, fig 4xV9 —x2 dx =

fx:3 —2yudu=-2- 3 = -5 [(9 - Xz)Kz; =0

x=—3

Answer to Exercise 2 (on page 11)

1. Let’s visualize the region in the xy-plane:

Y

The region is a quarter-circle that can be described with D = {(1,0) [0 <1 <2, 0 <

15
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0 < mr/2}. Then we can re-write the integral in polar coordinates:

2 VAT /2 (2 R
J J e ¥ Y dydx :J J re " drd®
o Jo

0Jo

2. The region is bounded by the x-axis, the line y = x/ V/3, and the circle x* + yz =1:
y

ﬁ
%
:
N[ —
-

i

We see that the region defined in polar coordinates is D = {(1,0) |0 <1 <1, 0 <
0 < 7t/6} . And therefore:

[T

/6 1
xyz dx dy :J J T (rcos0) (rsinG)2 drde
V3y

0 0 0

/6 1
= J [cos 0 sin? 6] do - J ar
0 0

T . 3 .0=n/6 T 50
- (uei)- (571)

_1 (Y

15 2/ 120

3. Visualizing the region:
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‘ X
1 2

We see that the region is the top half of a circle of radius 1 centered at (1, 0). In
polar coordinates, this region is D = {(1,0) |0 < r < 2¢0s6,0 < 0 < 7/2}. And

therefore:
VX2 +y?dydx = J

0

J~2 J\/ 2x—x2 /2

2cos 0
J 12 dr do
0

0J0

/2 2 cos6 /2 1 ] 0
_ J J 2 drdo = J - MT " a0
o Jo o 3L Ir=0

8 /2 ; 8 /2 ,
—gL Cos Gde—gL cos@(] — sin 6> do
8
!
8|, . ,0=np2 1 .3 b=n/2
= [(sme)ezz)T — (§ sin 6)6_0

8 1/35 5\] 8 2 16
=3|0-0-5( Oﬂ—g'g—?

71/2 /2
J CosedG—J cos 0sin? 0 do
0 0

Answer to Exercise 3 (on page 12)

We are finding the volume of the solid that lies under the surface z = 4 — x> — y? and
above the xy-plane.
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We can use polar coordinates to simplify the double integral. In polar coordinates, x =
rcos(0) and y = rsin(0), so x* + y?> = 2. The volume under the surface and above the
xy-plane is given by

vz”(4—r2)rdrde, (1.1)

where 1 ranges from 0 to 2 (since 4 — 2>0ifo<r< 2) and 0 ranges from 0 to 27.

Hence,

r270 2
V= J(4r—r3)drd6
JO 0

r27C 1 2

= [Zrz — r4] do
Jo 4

P27t

= (8 —4)de

J O

P27

= 4 do

JO

= 403"

= 8.

So the volume of the solid is 87t cubic units.

Answer to Exercise 4 (on page 13)

Let’s describe the footprint of the pool as a 20-foot radius circle centered at the origin
(that is, a region D= {(1,0) [ 0 <1 < 20, 0 < 0 < 2m}). Further, let’s take north-south as
parallel to the y-axis and east-west as parallel to the x-axis. Then the depth of water is
then given by z = f(x,y) = 5x + 3 over the footprint of the pool. And the total volume

of water is given by:
2m 20
7 13
Jo L T <40rc056 + 2> dr do

27 20
7 5 13
= — 0+ — do
L L LOT cos 0 + zr] dr

2 20 20
B 7 cos 0 ) 13
_Jo [ 20 L T dr+2J0 rdr] do

27T r=20 r=20
)R ) e
o | 40 \3 ), " 2\2 ).,




I 0=2mn
:J 1400 s +1300] a0 = [ 149 Gine + 13000
o | 3 3 0=0

= 26007t cubic feet
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