
Chapter 1

Dijkstra’s Algorithm

Edsger W. Dijkstra was a great Dutch computer scientist. He came up with an algorithm
for finding the cheapest path through a graph with weighted edges. Today it is known
as Dijkstra’s Algorithm. It is used in a wide variety of common problems. It is also really
pretty simple and elegant.

1.1 Algorithm Description

You are going to mark each node with how much it would cost to get there from some
origin node. For example, if you are shipping a container from Long Beach, you will mark
each city with the cost of getting the container to that city.

You start by marking the price for Long Beach to zero. (The container is already there.)
Then, you mark each adjacent city with the cost on the edge. Now you declare Long Beach
to be “visited”.

Now, you find the cheapest of the unvisited nodes. In this case, Los Angeles is cheaper
than San Diego, so that is the node you will visit next.

You mark all of the unvisited nodes adjacent to Los Angeles, with the price to ship it to
Los Angeles plus the cost of shipping the container from Los Angeles to that city. Note
that Bakersfield is marked with $22.

1

2 Chapter 1. DIJKSTRA’S ALGORITHM

Now the cheapest unvisited node is San Diego. So you mark its neighbors with the cost
to ship to San Diego plus the price to ship from San Diego to the neighbor.

Notice that Bakersfield is already labeled with $22 from a route through Los Angeles. But
the price would be $21 if you shipped it to Bakersfield via San Diego. Because the new
route is cheaper, you change the price to the lower value.

(What does it mean that a node is “visited”? If a node is marked visited, it is marked
with a price that won’t get any smaller.)

And you continue visiting the cheapest unvisited node until all the nodes have been vis-
ited. Then you know every node has been marked with its lowest price.

In a big graph, each node may be marked several times in this process – each time with a
lower price from a cheaper router.

Of course, once you have the price, you will ask “What is the route that gets me that
price?” So we will also mark each node with the neighbor from which it would receive
the shipment – the previous node. This is easy to do as we execute the algorithm.

Section 1.2 IMPLEMENTATION 3

Now, to figure out the cheapest route from San Diego to Bakersfield, we start at the des-
tination and follow the prev pointer back through San Diego and then to Long Beach.

1.2 Implementation

We don’t actually want to sully our graph objects with the three additional pieces of
information we need:

• The current minimal cost from the origin node. This is usually called the dist, from
“distance”.

• The neighbor who gives us the current minimal cost. This is usually called prev,
from “previous”.

• Whether the city is visited or now.

So we will keep them in collections external to the graph.

For example, to keep track of the dist, we will have a dist dictionary: Each node will be
a key, the current minimal cost will be the value. If the node hasn’t received even a first
cost, we will put in infinity as the cost.

(After the algorithm is run, if the cost of a node is still infinity, that means that it cannot
be reached from the origin node.)

We will also have a prev dictionary. The final node will be the key, and its previous
neighbor will be the value.

Finally, the graph has a list of all the nodes, so we can just keep a set of the unvisited
nodes.

4 Chapter 1. DIJKSTRA’S ALGORITHM

Add a method to the Graph class that implements Dijkstra’s algorithm:

def cost_from_node(self, origin_node):
Cost of cheapest path from origin node discovered so far
Initially the origin is zero and all the other are infinity
dist = {k: math.inf for k in self.nodes}
dist[origin_node] = 0.0

The previous city on that cheapest path
prev = {}

All the nodes start as unvisited
unvisited = set(self.nodes)

While there are still unvisited nodes
while unvisited:

Find unvisited node with lowest cost
min_cost = math.inf
for u in unvisited:

if dist[u] < min_cost:
current_node = u
min_cost = dist[u]

If none are less than inf, we are done
This happens in graphs that are not connected
if min_cost == math.inf:

return (dist, prev)

Remove the lowest cost node from the unvisited list
unvisited.remove(current_node)

Update all the unvisited neighbors
for edge in current_node.edges:

What node is at the other end of this edge?
v = edge.other_end(current_node)

Visited nodes are already minimized, skip them
if v not in unvisited:

continue

Is this a shorter route?
alt = dist[current_node] + edge.cost
if alt < dist[v]:

Update the distance and prev dicts
dist[v] = alt
prev[v] = current_node

return (dist, prev)

Section 1.2 IMPLEMENTATION 5

Append some code to your cities.py that test this method:

(cost_from_long_beach, prev) = network.cost_from_node(long_beach)
print(f"\nMinimum costs from Long Beach = {cost_from_long_beach}")
print(f"\nLast city before = {prev}")

nyc_cost = cost_from_long_beach[nyc]

if nyc_cost < math.inf:
print(f"\n*** Total cost from Long Beach to NYC: ${nyc_cost:.2f} ***")

else:
print("You can't get to NYC from Long Beach")

When you run it, you should get a list of how much it costs to ship a container to each
city from Long Beach:

Minimum costs from Long Beach = {(node:Long Beach, edges:1): 0.0,
(node:Los Angeles, edges:3): 12.0, (node:Denver, edges:3): 35.0,
(node:Pheonix, edges:3): 31.0, (node:Louisville, edges:3): 49.0,
(node:Cleveland, edges:4): 44.0, (node:Boston, edges:2): 57.0,
(node:New York City, edges:3): 52.0}

You will also get a collection of node pairs. What are these? For each node, you get the
node that you would pass through on the cheapest route from Long Beach:

Last city before = {(node:Los Angeles, edges:3):(node:Long Beach, edges:1),
(node:Denver, edges:3):(node:Los Angeles, edges:3),
(node:Pheonix, edges:3):(node:Los Angeles, edges:3),
(node:Louisville, edges:3):(node:Denver, edges:3),
(node:Cleveland, edges:4):(node:Denver, edges:3),
(node:New York City, edges:3):(node:Cleveland, edges:4),
(node:Boston, edges:2): (node:Cleveland, edges:4)}

Your users won’t want to read this; Give them the shortest path as a list. Add a function
to graph.py that turns the prev table into a path of nodes that lead from the origin to the
destination:

def shortest_path(prev, destination):

Include the destination in the path
path = [destination]
current_node = destination

Keep stepping backward in the path
while current_node in prev:

What node should come before the current node?
previous_node = prev[current_node]

6 Chapter 1. DIJKSTRA’S ALGORITHM

Insert it at the start of the list
path.insert(0, previous_node)
current_node = previous_node

return path

Test that out:

if nyc_cost < math.inf:
print(f"*** Total cost from Long Beach to NYC: $nyc_cost:.2f ***")

path_to_nyc = graph.shortest_path(prev, nyc)
print(f"*** Cheapest path from Long Beach to NYC: path_to_nyc ***")

else:
print("You can't get to NYC from Long Beach")

This should look like this:

*** Cheapest path from Long Beach to NYC: [(node:Long Beach, edges:1),
(node:Los Angeles, edges:3), (node:Denver, edges:3), (node:Cleveland, edges:4),
(node:New York City, edges:3)] ***

1.3 Making it faster

On really big networks, doing a full Dijkstra’s algorithm would take too long. So there
are a lot of methods for getting similar results quickly. When you ask for directions from
Google Maps, it doesn’t do a full Dijkstra’s Algorithm for every possible route – it would
just take too long.

But there is a way to speed up this implementation. Look at this snippet:

Find unvisited node with lowest cost
min_cost = math.inf
for u in unvisited:

if dist[u] < min_cost:
current_node = u
min_cost = dist[u]

We are scanning through the list of all unvisited nodes, one-by-one, looking for the one
with the lowest cost. If we kept this list sorted by cost, then the next one to visit would
always be the first one in the list. This is done with a priority queue – a list that keeps itself
sorted by some priority number – in this case the cost. In python, the standard priority
queue is heapq.

Section 1.3 MAKING IT FASTER 7

(So why didn’t I implement this using heapq? For Dijkstra’s Algorithm, the nodes’ priority
– the current cost – changes as we find cheaper routes. heapq doesn’t handle the changing
priority very gracefully.)

In the next chapter, you will make a priority queue class that will work in this case.

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.

https://kontinua.org/
https://kontinua.org/

Appendix A

Answers to Exercises

9

10 Chapter A. ANSWERS TO EXERCISES

Index

Dijkstra’s Algorithm, 1
Dijkstra, Edsger, 1

priority queue, 6

11

	Dijkstra's Algorithm
	Algorithm Description
	Implementation
	Making it faster

	Answers to Exercises
	Index

