
Chapter 1

Differential Equations

Differential equations are equations involving an unknown function and its derivatives.
They play a crucial role in mathematics, physics, engineering, economics, and other dis-
ciplines due to their ability to describe change over time or in response to changing con-
ditions.

1.1 Ordinary Differential Equations

An ordinary differential equation (ODE) involves a function of a single independent vari-
able and its derivatives. The order of an ODE is determined by the order of the highest
derivative present in the equation. An example of a first-order ODE is:

dy

dx
+ y = x (1.1)

Here, y is the function of the independent variable x, and dy
dx represents its first derivative.

A real-world example of the application of differential equations is an oscillating spring
(or any harmonic motion). When a spring is stretched, the restoring force (the force
pulling or pushing it back to its neutral position) is proportional to the distance by which
the spring has been stretched (see figure ??). Mathematically, we say that

restoring force = −kx

where k is the positive spring constant (the stiffer a spring, the greater k).

x = 0

∆x < 0

∆x = 0

∆x > 0

Figure 1.1: A spring can have a positive or negative displacement

Recall that Newton’s Second Law tells us that force is equal to mass times acceleration, and
that acceleration is the second derivative of position. We can then write the differential
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equation:

m
d2x

dt2
= −kx

This is called a second-order differential equation because it involves second-order deriva-
tives. The order of a differential equation is the same as the highest order of derivative in
the equation. We can further re-write the equation to isolate the second derivative:

d2x

dt2
= −

k

m
x

In everyday language, this is saying that the second derivative is proportional to the orig-
inal function, just negative. There are two trigonometric functions that have this property,
take a second to see if you remember and write down your guess.

The sine and cosine functions both have the property d2x
dt2

∝ −x(t) (recall that ∝ means
“proportional to”).

Example: Assuming x(t) is a sine function, solve the second-order differential equation
d2x
dt2

= −k
m x.

Solution: Let x(t) = sinCt. Then dx
dt = C cosCt and d2x

dt2
= −C2 sin t. This implies

that C2 = k
m and C = ±

√
k
m . So a solution to the differential equation d2x

dt2
= −k

m x is

x(t) = sin
√

k
mt.

1.1.1 Population Growth

Another real-world application of differential equations is modeling population growth.
Under ideal conditions (unlimited food, no predators, disease-free, etc.), the population
of a species grows at a rate proportional to the current population size. We can identify
2 variables:

t = time (the independent variable)

P = the number pf individuals in the population (the dependent variable)

Then what is the rate of growth? Recall that a rate is change over time. In that case, the
rate of growth is given by dP

dt . If the rate of growth is proportional to the population, then
we can write a first-order differential equation:

dP

dt
= kP

Where k is a proportionality constant. This is called natural growth or logarithmic
growth. To find a solution, we must answer the question: what function’s derivative
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is a constant multiple of itself? Recall that we’ve seen that the derivative of the expo-
nential function ekt is kekt. Setting P(t) = Cekt (where C is some constant), we see that
the derivative is dP

dt = kCekt = kP(t) (see figure 1.2). You can determine C from initial
conditions.

t

P

Figure 1.2: Several solutions to dP
dt = kP

Example: Suppose a population of bacteria has an initial population of 100 bacteria. If
the bacteria’s growth rate is given by dP

dt = 2P, (where t is in hours) how many bacteria
are present after 4 hours?

Solution: We have seen that the solution to dP
dt = 2P is P(t) = Ce2t. We can then use the

given initial condition to find C:

P(0) = 100 = Ce2·0 = C · 1 = C

Which means that the complete solution is:

P(t) = 100e2t

To answer the question, we need to find P(4):

P(4) = 100e2·4 = 100e8 ≈ 298096

As stated above, this model works well for populations under specific, ideal conditions.
However, there are very few environments in which these conditions are met. Real ani-
mals suffer from disease, are hunted by predators, and have limited food supplies. Most
environments have a maximum number of animals they can support, which ecologists
call a carrying capacity. Let us call the carrying capacity of an environment M. Then the
population growth can be modeled by the logistic differential equation:

dP

dt
= kP

(
1−

P

M

)
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This is called a logistic differential growth model. Notice that if P is small, then dP
dt ≈ kP.

This makes sense: if the population is very small compared to the carrying capacity, the
conditions are nearly ideal, and so growth should be nearly ideal too. On the other hand,
if the population ever goes above the carrying capacity, the dP

dt < 0 and the population
will decrease back below the carrying capacity (see figure 1.3). Notice that if the initial
population is P0 = M, then dP

dt = kP (1− 1) = 0 and the population is stable at P(t) =
M. We call this an equilibrium solution. Can you logically find the other equilibrium
solution?

If there are no animals to begin with, then there are none to reproduce, and P(t) = 0.
This is the other equilibrium solution. Notice that when the population is in equilibrium,
then the rate of change is zero. Mathematically, to find equilibrium solutions, we can set
dP
dt = 0 and solve for P.

M

t

P

Figure 1.3: Several solutions to dP
dt = kP

(
1− P

M

)
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Exercise 1

.A population is modeled by the differ-
ential equation dP

dt = 1.2P
(
1− P

4200

)
.

1. What is the carrying capacity of the
environment?

2. For what values of P is the popu-
lation increasing?

3. For what values of P is the popu-
lation decreasing?

4. What are the equilibrium solutions?

Answer on Page 11

Working Space

Exercise 2

.[This problem was originally presented
as a calculator-allowed, free response ques-
tion on the 2012 AP Calculus BC exam.]
Let k be a positive constant. Which of
the following is a logistic differential equa-
tion?
(a) dy

dt = kt

(b) dy
dt = ky

(c) dy
dt = kt(1− t)

(d) dy
dt = ky(1− t)

(e) dy
dt = ky(1− y)

Answer on Page 11

Working Space
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1.1.2 Separable Differential Equations

Sometimes, differential equations can be explicitly solved. A first-order differential equa-
tion is separable if dy

dx can be written as a function of x times a function of y. Symbolically,
a differential equation is separable if it takes the form

dy

dx
= g(x)f(y)

The equations may be solvable by separating the x from the y and integrating each side.
For our generic form, we can separate the variables thusly if f(y) 6= 0:

dy

dx

1

f(y)
= g(x)

1

f(y)
dy = g(x)dx

Integrating both sides: ∫
1

f(y)
dy =

∫
g(x)dx

.

Let’s look at the example dy
dx = x2

y . We can separate the variables by multiplying both
sides by ydx:

ydy = x2dx

Integrating both sides: ∫
ydy =

∫
x2 dx

1

2
y2 + C1 =

1

3
x3 + C2

We can combine the constants by defining C = C2 − C1. Making this substitution and
solving for y, we find:

y2 =
2

3
x3 + 2C

y =

√
2

3
x3 + 2C

Noting that 2C is also a constant (which we’ll call K for convenience), we find the general
solution is

y =

√
2

3
x3 + K

A graph showing the solution for several values of K is in figure 1.4.
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Figure 1.4: Several possible solutions to dy
dx = x2

y

It is not always possible to solve for y explicitly in terms of x. The practice problem below
is an example of this.

Exercise 3

.Solve the differential equation dy
dx = 3x2

2y+siny .

Answer on Page 11

Working Space
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Exercise 4

.[This problem was originally presented
as a calculator-allowed, free response ques-
tion on the 2012 AP Calculus BC exam.]
The rate at which a baby bird gains mass
is proportional to the difference between
its adult mass and its current mass. At
time t = 0, when the bird is first weighed,
its mass is 20 grams. If B(t) is the mass
of the bird, in grams, at time t days after
it is first weighed, then

dB

dt
=

1

5
(100− B)

Let y = B(t) be the solution to the dif-
ferential equation with initial condition
B(0) = 20.

1. Is the bird gainingmass faster when
it masses 40 grams or when it masses
70 grams? Explain your reasoning.

2. Find d2B
dt2

in terms of B. Use it to
explain why the graph of B cannot
resemble the graph shown below.

3. Use separation of variables to find
y = B(t), the particular solution to
the differential equation with ini-
tial condition B(0) = 20.

20

100

time (days)

weight (grams)

Answer on Page 12

Working Space
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Exercise 5

.[This problem was originally presented
as a no-calculator, multiple-choice ques-
tion on the 2012 AP Calculus BC exam.]
If P(t) is the size of a population at time
t, which of the following differential equa-
tions describes linear growth in the size
of the population?
(a) dP

dt = 200

(b) dP
dt = 200t

(c) dP
dt = 100t2

(d) dP
dt = 200P

(e) dP
dt = 100P2

Answer on Page 12

Working Space

1.2 Partial Differential Equations

Partial differential equations (PDEs), on the other hand, involve a function of multiple
independent variables and their partial derivatives. An example of a PDE is the heat
equation, a second-order PDE:

∂u

∂t
= α

∂2u

∂x2
(1.2)

In this equation, u = u(x, t) is a function of the two independent variables x and t, ∂u
∂t is

the first partial derivative of u with respect to t, and ∂2u
∂x2

is the second partial derivative
of u with respect to x.

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.

https://kontinua.org/
https://kontinua.org/


Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 5)

1. 4200

2. Logically, we can say that the population will increase if it is below the carrying
capacity (that is, P < 4200), but we can also prove it mathematically: dP

dt < 0 →
1.2P

(
1− P

4200

)
< 0 → P

(
1− P

4200

)
< 0. Since we are talking about population, we

can assume that P > 0 and continue: 1 − P
4200 < 0 → 1 < P

4200 → 4200 < P, which is
the result we expected.

3. Similarly, we know the population should be decreasing when P is greater than the
carrying capacity of 4200.

4. The equilibrium solutions can be found by setting dP
dt = 0 and solving. The solutions

are P(t) = 0 and P(t) = 4200.

Answer to Exercise 2 (on page 5)

Recall that logistic differential equations are of the form dy
dt = ky(1 − y

m) where y is a
function and t is the independent variable. (e) is the only logistic differential equation,
with m = 1.

Answer to Exercise 3 (on page 7)

dy

dx
dx =

3x2

2y+ siny
dx

(2y+ siny)(dy) =
3x2

2y+ siny
(2y+ siny)(dx)

(2y+ siny)dy = (3x2)dx∫
2ydy+

∫
sinydy =

∫
3x2 dx

y2 − cosy = x3 + C

11
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Answer to Exercise 4 (on page 8)

1. Since dB
dt depends only on B, we can use the given masses to find the rate of growth

for each mass. dB
dt (40) = 1

5 (100− 40) = 1
5 (60) = 12 and dB

dt (70) = 1
5 (100− 70) =

1
5 (30) = 6. Since dB

dt is greater when B = 40, the baby bird is gaining mass faster
when it has a mass of 40 grams.

2. d2B
dt2

= d
dt

(
dB
dt

)
= d

dt

[
1
5 (100− B)

]
= 1

5

(
−dB

dt

)
= −1

5

[
1
5 (100− B)

]
= − 1

25 (100− B). For
20 < B < 100, d2B

dt2
< 0 and the graph of B should be concave down. The graph

shown has a concave up portion, so it cannot represent B(t).

3. dB
dt = 1

5 (100− B) → dB
100−B = 1

5dt → ∫
(100− B) dB =

∫
1
5 dt → − ln 100− B =

t
5 +C → e

−t
5
+C = 100−B → ke

−t
5 = 100−B → B(t) = 100− ke

−t
5 . Setting B(0) = 20

to find k: 20 = 100 − ke0 → 20 = 100 − k → k = 80. So the particular solution is
B(t) = 100− 80e

−t
5

Answer to Exercise 5 (on page 10)

(A). (a), (b), and (c) are all separable equations. But only the solution to A is linear
(P(t) = 200t+ C). (d) is logarithmic, or natural growth and (e) is also not linear.
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