
Chapter 1

Rules for Finding Derivatives

Derivatives play a key role in calculus, providing us with a means of calculating rates of
change and the slopes of curves. In this chapter, we present some common rules used to
calculate derivatives.

1.1 Constant Rule

The derivative of a constant is zero. If c is a constant and x is a variable, then:

d

dx
c = 0 (1.1)

1.2 Power Rule

For any real number n, the derivative of xn is:

d

dx
xn = nxn−1 (1.2)

1.3 Product Rule

The derivative of the product of two functions is:

d

dx
(fg) = f ′g+ fg ′ (1.3)

where f ′ and g ′ denote the derivatives of f and g, respectively.

1.4 Quotient Rule

The derivative of the quotient of two functions is:
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d

dx

(
f

g

)
=

f ′g− fg ′

g2
(1.4)

1.5 Chain Rule

The derivative of a composition of functions is:

d

dx
(f(g(x))) = f ′(g(x)) · g ′(x) (1.5)

1.6 Practice

Exercise 1

.If f is the function given, find f ′.

1. f(x) = x sin x

2. f(x) = (x3 − cos x)5

3. f(x) = sin3 x

Answer on Page 7

Working Space

Exercise 2

.Let f(x) = 7x − 3 + ln x. Find f ′(x) and
f ′(1)

Answer on Page 7

Working Space
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Exercise 3

.[This question was originally presented
as a multiple-choice, no-calculator ques-
tion on the 2012 AP Calculus BC exam.]
The position of a particle in the xy-plane
is given by the parametric equations x(t) =
t3−3t2 and y(t) = 12t−3t2. State a coor-
dinate point (x, y) at which the particle
is at rest.

Answer on Page 7

Working Space

Exercise 4

.Let f(x) =
√
x2 − 4 and g(x) = 3x − 2.

Find the derivative of f(g(x)) at x = 3.

Answer on Page 7

Working Space

Exercise 5

.The particle’s position on the x-axis is
given by x(t) = (t − a)(t − b), where a

and b are constants and a 6= b. At what
time(s) is the particle at rest?

Answer on Page 8

Working Space
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Exercise 6

.[This question was originally presented
as a multiple-choice, no-calculator ques-
tion on the 2012 AP Calculus BC exam.]
Let f(x) = x

x+2 . At what values of x does
f have the property that the line tangent
to f has a slope of 1

2?

Answer on Page 8

Working Space

Exercise 7

.For t ≥ 0, the position of a particle mov-
ing along the x-axis is given by x(t) =
sin t− cos t. (a) When does the velocity
first equal 0? (b) What is the accelera-
tion at the time when the velocity first
equals 0?

Answer on Page 8

Working Space

Exercise 8

.The graph of y = e( tan x)−2 crosses the
x-axis at one point on the interval [0, 1].
What is the slope of the graph at this
point?

Answer on Page 9

Working Space
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Exercise 9

.The function f is defined by f(x) =
√
25− x2

for −5 ≤ x ≤ 5.
(a) Find f ′(x).
(b) Write an equation for the line tan-
gent to the graph at x = −3.

Answer on Page 9

Working Space

Exercise 10

.For 0 ≤ t ≤ 12, a particle moves along
the x-axis. The velocity of the particle at
a time t is given by v(t) = cos π

6 t. What
is the acceleration of the particle at time
t = 4?

Answer on Page 10

Working Space

Exercise 11

.[This question was originally presented
as a multiple-choice, calculator-allowed
question on the 2012 AP Calculus BC
exam.] Let f and g be the functions given
by f(x) = ex and g(x) = x4. On what in-
tervals is the rate of change of f(x) greater
than the rate of change of g(x)?

Answer on Page 10

Working Space
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1.7 Conclusion

These rules form the basis for calculating derivatives in calculus. Many more complex
rules and techniques are built upon these fundamental rules.

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.

https://kontinua.org/
https://kontinua.org/


Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 2)

1. dy
dx = d

dx [x sin x] = x d
dx sin x+ sin x d

dxx = x(− cos x) + sin x(1) = sin x− x cos x

2. By the chain rule, f ′(x) = 5(x3 − cos x)4 · d
dx(x

3 − cos x) = 5(x3 − cos x)4 · (3x2 + sin x)

3. By the chain rule, f ′(x) = d
d(sin x) [sin

3 x]× d
dx sin x = 3 sin2 x · cos x

Answer to Exercise 2 (on page 2)

f ′(x) = d
dx(7x) −

d
dx(3) +

d
dx(ln x) = 7− 0+ 1

x = 7− 1
x and f ′(1) = 7− 1

1 = 6

Answer to Exercise 3 (on page 3)

The particle is at rest when x ′(t) = y ′(t) = 0. First, we find each of the derivatives:

x ′(t) = 3t2 − 6t

y ′(t) = 12− 6t

We can solve y ′ = 0 for t and find that the y-velocity is 0 when t = 2. Substituting t = 2

into our expression for x ′, we find x ′(2) = 3(2)2 − 6(2) = 0. Therefore, the particle is at
rest when t = 0. To find the xy-coordinate, we substitute t = 2 into x(t) and y(t):

x(2) = (2)3 − 3(2)2 = 8− 12 = −4

y(2) = 12(2) − 6(2) = 24− 12 = 12

Therefore, the particle is at rest when it is located at (−4, 12).

Answer to Exercise 4 (on page 3)

f(g(x)) =
√
(3x− 2)2 − 4 =

√
9x2 − 12x and d

dxf(g(x)) =
18x−12

2
√
9x2−12x

. Substituting x = 3, we
find f ′(g(x)) = 18(3)−12

2
√

9(3)2−12(3)
= 42

2
√
45

= 21

3
√
5
= 7√

5

7
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Answer to Exercise 5 (on page 3)

First, recall that the velocity of a particle is the derivative of its position function. There-
fore, v(t) = x ′(t) = d

dt [(t − a)(t − b)]. Applying the Product Rule for derivatives, we see
that v(t) = (t− a)(1) + (t− b)(1) = 2t− a− b. To find the time(s) when the particle is at
rest, we set v(t) = 0 and solve for t.

0 = 2t− a− b

2t = a+ b

t =
a+ b

2

Answer to Exercise 6 (on page 4)

The question is asking when the derivative of f is 1
2 . We will take the derivative and set

it equal to 1
2 .

f ′(x) =
(x+ 2)(1) − x(1)

(x+ 2)2
=

2

(x+ 2)2

2

(x+ 2)2
=

1

2

4 = (x+ 2)2

±2 = x+ 2

x = 2− 2 = 0 and x = −2− 2 = −4

Answer to Exercise 7 (on page 4)

(a) Let t0 be the time at which the particle is first at rest. The velocity of the particle is
given by v(t) = x ′(t) = cos t+ sin t. Setting v(t) = 0, we find:

cos t = − sin t

which is true for t = 3π+4n
4 , where n is an integer. Therefore, the first time the velocity is

0 is t0 = 3π
4 .

(b) To find the acceleration at t = 3π
4 , we take the derivative of the velocity function to

yield the acceleration function.

a(t) = v ′(t) = − sin t+ cos t

. Substituting t = 3π
4 , we find the acceleration is − sin 3π

4 + cos 3π
4 = −

√
2

2 −
√
2
2 = −

√
2
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Answer to Exercise 8 (on page 4)

First, we find the x such that y = 0

0 = etan x − 2

2 = etan x

ln 2 = tan x

x = arctan (ln 2) = arctan 0.693 ≈ 0.606

Then, we find the slope of the function at x = 0.606 by finding y ′(0.606)

y ′ = etan x(sec x)2 = etan x

(cos x)2

y ′(0.606) =
etan 0.606

(cos 0.606)2 = 2.961

Answer to Exercise 9 (on page 5)

(a) Apply the chain rule to find f ′(x)

f ′(x) =
1

2
√
25− x2

· (−2x) =
−x√

25− x2

.
(b) First, substitute x = −3 into f ′(x)

f ′(−3) =
−(−3)√
25− (−3)2

=
3√
16

=
3

4

This is the slope of the line. To complete an equation for the tangent line, we need a point.
We know the tangent line touches f(x) at x = −3, so the tangent line must pass through
the point (−3, f(−3)).

f(−3) =
√
25− (−3)2 = 4

We use m = 3
4 and the coordinate point (x1, y1) = (−3, 16) to complete the equation

y− y1 = m(x− x1)

y− 16 =
3

4
(x+ 3)
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Answer to Exercise 10 (on page 5)

a(t) = v ′(t) = −
π

6
sin π

6
t

a(4) = −
π

6
sin 2π

3
= −

π

6
·
√
3

2
= −

π
√
3

12

Answer to Exercise 11 (on page 5)

Recall that the rate of change of a function is given by the derivative of that function.
Therefore, we are looking for the interval(s) where f ′(x) > g ′(x). First, we find each
derivative:

f ′(x) = ex

g ′(x) = 4x3

We are looking for x-values, such that ex > 4x3. This inequality can be restated as ex−4x3 >

0. Using a calculator, you should find that ex−4x3 = 0 when x ≈ 0.831 and x ≈ 7.384. We
will check values on either side of and in the interval x ∈ (0.831, 7.384) to determine the
sign value of ex − 4x3. We know that when x = 0, ex − 4x3 > 0, when x = 5, ex − 4x3 < 0,
and when x = 10, ex− 4x3 > 0. Therefore, f ′(x) is greater than g ′(x) on the open intervals
x ∈ (−∞, 0.831) ∪ (7.384,∞).
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