
Chapter 1

Derivatives

In calculus, the derivative of a function represents the rate at which the function is chang-
ing at a particular point. It is a fundamental concept that has vast applications in various
fields, including physics.

1.1 Definition

The derivative of a function f(x) at a point x is defined as the limit:

f ′(x) = lim
h→0

f(x+ h) − f(x)

h
(1.1)

provided this limit exists. In words, the derivative of f at x is the limit of the rate of change
of f at x as the change in x approaches zero. The derivative of a function is equal to the
slope of the function. The derivative of a function, f(x), is denoted as f ′(x) (read out
loud as ”f prime of x”) or df/dx. The origin of this definition was shown in the previous
chapter, Differentiation.

1.1.1 Estimating the Derivative

Consider the function f(x) = x2. Suppose we want to write an equation for a line that
is tangent to the curve at x = 2 (see figure 1.1). We already have a point that the line
passes through: (2, 4). To write an equation for the tangent line, we would need to know
its slope, m.

We can estimate the slope by choosing points on either side of P, drawing a line through
those points, and calculating the slope of that secant line (it is a secant line because it
intersects the curve more than once). See figure 1.2 for a visualization.

As the points Q and R get closer to P, the better the estimate becomes.

Much scientific data is not described as continuous functions, but rather as discrete data
points. Consider the following data of a falling object:

1
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Figure 1.1: The red line is tangent to f(x) = x2 at the point (2, 4)
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Figure 1.2: The slope of the secant line is approximately the slope of the tangent line
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time (seconds) height (m)
0 50
0.5 48.775
1 45.1
1.5 38.975
2 30.4
2.5 19.375
3 5.9

A graph of the data is shown in figure 1.3.
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Figure 1.3: The height of a falling object over time

Suppose we wanted to estimate the velocity of the falling object at t = 1.5s. Recall that
velocity is given by the change in position divided by the change in time. We can select
data points on either side of t = 1.5s and use them to find the average velocity from t = 1s
and t = 2s (see figure 1.4):

v =
h2 − h2

t2 − t1
=

30.4m− 45.1m
2s− 1s = −14.7

m
s

Example: A 1000-gallon tank drains from the bottom in 30 minutes. The volume left in
the tank is recorded every 5 minutes, as shown in the data table below. Use the data
to estimate V ′(15) and V ′(25), including appropriate units. At which time is the tank
draining faster?
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Figure 1.4: The slope of the line connecting the data points on either side of t = 1.5s is
approximately the velocity of the falling object at t = s

t (min) V (gal)
5 694

10 444

15 250

20 111

25 28

30 0

Solution: To estimate V ′(15), we find the slope of the line connecting the data points on
either side of t = 15:

V ′(15) ≈ 111gal− 444textgal

20min− 10min

V ′(15) ≈ −333gal
10min

V ′(15) ≈ −33.3
gal
min

And we can use the data at t = 20 and t = 30 to estimate V ′(25):

V ′(25) ≈ 0gal− 111gal
30min− 20min

V ′(25) ≈ −111gal
10min

V ′(25) ≈ −11.1
gal
min

Both answers are negative because the tank is emptying, and the tank is draining faster
at t = 15 than at t = 25.
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Exercise 1

.[This question was originally presented
as a free-response, calculator-allowed ques-
tion on the 2012 AP Calculus BC Exam.]
The temperature of water in a tub at time
t is modeled by a function, W, where
W(t) is measured in degrees Fahrenheit
and t is measured in minutes. Values
of W(t) at selected times for the first 20
minutes are given in the table. Use the
data in the table to estimateW ′(12). Show
the computations that lead to your an-
swer. Using correct units, interpret the
meaning of your answer in the context
of the problem.
t (minutes) W(t) (degrees Fahrenheit)

0 55.0
4 57.1
9 61.8
15 67.9
20 71.0

Answer on Page 15

Working Space

1.2 The Derivative as a Function

We have seen how to estimate the value of a derivative at a specific point on a graph.
Suppose we wanted to describe the slope of a graph everywhere. That is: can we find
a function, g(x) that describes the slope of another function, f(x), over the domain of f?
Using the definition of a derivative, we can. You have already seen an algorithm to find
the derivatives of polynomial functions (see chapter Differentiating Polynomials FIXME
can this be linked). Recall that for a function, f(x) = xn, the derivative is f ′(x) = nxn−1.
Here is the proof:

f ′(x) = lim
h→0

f(x+ h) − f(x)

h

f ′(x) = lim
h→0

(x+ h)n − xn

h

In order to expand the polynomial, (x + h)n, we’ll need to apply the Binomial Theorem,
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which tells us that:

(a+ b)n = an + nan−1b+
n(n− 1)

2!
an−2b2 +

n(n− 1)(n− 2)

3!
an−3b3 + · · ·+ nabn−1 + bn

Substituting this into our limit definition of a derivative, we see that:

f ′(x) = lim
h→0

xn + nxn−1h+ n(n−1)
2! xn−2h2 + · · ·nxhn−1 + hn − xn

h

f ′(x) = lim
h→0

nxn−1h+ n(n−1)
2! xn−2h2 + · · ·nxhn−1 + hn

h

f ′(x) = lim
h→0

nxn−1 +
n(n− 1)

2!
xn−2h+ · · ·nxhn−2 + hn−1

f ′(x) = nxn−1

Example: Use the limit definition of a derivative to find f ′(x) if f(x) = 2x3 − x2.

Solution: According to the limit definition, f ′ is:

f ′(x) = lim
h→0

f(x+ h) − f(x)

h
=

[
2 (x+ h)3 − (x+ h)2

]
−
[
2x3 − x2

]
h

f ′(x) = lim
h→0

[
2
(
x3 + 3hx2 + 3h2x+ h3

)
−
(
x2 + 2xh+ h2

)]
− 2x3 + x2

h

f ′(x) = lim
h→0

2x3 − 2x3 + 6hx2 + 6h2x+ 6h3 − x2 + x2 − 2xh− h2

h

f ′(x) = lim
h→0

6hx2 + 6h2x+ 6h3 − 2xh− h2

h

f ′(x) = lim
h→0

6x2 + 6hx+ 6h2 − 2x− h = 6x2 − 2x

Therefore, if f(x) = 2x3 − x2, then f ′(x) = 6x2 − 2x.
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Exercise 2 Finding Functions for Derivatives

.Use the limit definition of a derivative to
find an equation for f ′(x).

1. f(x) = mx+ b

2. f(x) =
√
16− x

3. f(x) = x2−1
2x−3

Answer on Page 15

Working Space

1.3 Applications in Mathematics

1.3.1 l’Hospital’s Rule

Consider the function h(x) = ln x
x−1 and suppose we are interested in the behavior of h(x)

around x = 1. If we apply the Quotient Rule, we get an indeterminate result:

lim
x→1

ln x

x− 1
=

0

0

FIXME Quotient rule isnt introduced before here.

Looking at the graph of h(x) (see figure 1.5), we can guess that limx→1
ln x
x−1 = 1.

Let’s examine the numerator and denominator separately: we’ll define f(x) = ln x and
g(x) = x− 1 (see figure 1.6).

If we zoom in very far around x = 1, the graphs begin to look linear (see figure 1.7):

We can approximate these graphs as linear functions with slopes m1 and m2, so that
the blue curve is approximated as y = m1(x − 1) and the red curve is approximated as
y = m2(x− 1). The ratio of the functions would then be

m1(x− 1)

m2(x− 1)
=

m1

m2

which is the same as the ratio of the derivatives of our linear approximations. This sug-
gests l’Hospital’s rule, that the limit of a ratio is the same as the limit of the ratio of the
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Figure 1.5: h(x) = ln x
x−1
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Figure 1.6: Examining each part of ln x
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Figure 1.7: As we zoom in, the graph of ln x appears linear
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derivatives for certain indeterminate forms:

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g ′(x)

.

Let’s apply l’Hospital’s rule to our limit of h(x):

lim
x→1

ln x

x− 1
= lim

x→1

d
dx ln x

d
dx(x− 1)

= lim
x→1

1
x

1
= 1

Notice our result with l’Hospital’s rule matches our guess based on the graph of h(x) =
ln x
x−1 .

L’Hospital’s rule also applies to the indeterminate result ±∞
±∞ . For a limit of the form

limx→a
f(x)
g(x) , l’Hospital’s rule applies if:

1. the original limit is of the indeterminate form 0
0 or ±∞

±∞
2. f and g are differentiable on an interval containing a (but possibly not differentiable

at a)

3. g ′(x) 6= 0 on said interval

Example: Determine limx→∞ ex

x2
.

Solution: We begin by evaluating the limit:

lim
x→∞ ex

x2
=

e∞∞2
=

∞∞
This is an indeterminate form that we can apply l’Hospital’s rule to:

= lim
x→∞

d
dxe

x

d
dxx

2
= lim

x→∞ ex

2x

Evaluating this limit, we get another indeterminate form:

=
e∞
2 ·∞ =

∞∞
Don’t panic! We can apply l’Hospital’s rule again (in fact, we can apply l’Hospital’s rule
as many times as needed to evaluate a limit, as long as we keep getting 0

0 or ±∞
±∞):

= lim
x→∞

d
dxe

x

d
dx2x

= lim
x→∞ ex

2
=

∞
2

= ∞
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and therefore, limx→∞ ex

x2
= ∞.

Exercise 3

.What is limx→0
tan x−x

x3
?

Answer on Page 16

Working Space

Note that this rule only applies if the form is indeterminate. Here is another example
fixme other indeterminite forms

Exercise 4

.Evaluate each of the following limits, us-
ing l’Hospital’s rule where needed.

1. limx→3
x−3
x2−9

2. limx→1/2
6x2+5x−4
4x2+16x−9

3. limx→0+
ln x√
x

4. limx→π
1+cos x
1−cos x

5. limx→1
x sin x−1
2x2−x−1

Answer on Page 17

Working Space

1.3.2 Mean Value Theorem

The Mean Value Theorem (MVT) states that on an interval [a, b] where a continuous
function f is differentiable on an open interval (a, b), there is at least one point where the
tangent line to f has the same slope as a line connecting the points (a, f(a)) and (b, f(b)).
Consider the graph of f(x) = x2 (see figure 1.8). The line connecting the points (−1, 1)
and (2, 4) has a slope of 1

2 . MVT tells us there must be at least one point, c, on the interval
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x ∈ (−1, 2) where f ′(c) = 1
2 . We can find this point by setting f ′(x) equal to 1

2 :

2x =
1

2
→ x =

1

4

Examining the figure 1.8, you can see that the tangent at f( 14) (the black line) is parallel
to the red line connecting (−1, f(−1)) and (2, f(2)).

−2 −1 0 1 2
−2

0

2

4

Figure 1.8: f(x) = x2

Note that MVT doesn’t tell us where f ′(x) is parallel to the line connecting (a, f(a)) and
(b, f(b)), just that some value c exists that satisfies the condition.

Example: Consider a hammer thrown upwards at 5 m
s2

on Earth (where the acceleration
due to gravity is approximately −9.8m

s2
).

Solution: We can use the MVT to show that there must be some point in the hammer’s
path upwards where the velocity of the hammer is exactly equal to its average velocity as
it flies through the air.

The hammer’s rise can be described with the function y(t) = 5t − 4.9t2. The hammer
reaches its peak at approximately t = 0.51. So, we are looking for some value, c, such that

y ′(c) =
y(0.51) − y(0)

0.51− 0
=

5(0.51) − 4.9(0.512)

0.51
=

1.2755

0.51
= 2.5

Solving y ′(t) = 5 − 9.8t = 2.5, we find that the c that satisfies the MVT is approximately
0.255. This result is illustrated in figure 1.9:

MVT Practice
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Figure 1.9: The height of a hammer tossed upwards at 5m
s

Exercise 5

.AT 3:30 PM, a car’s speedometer reads
30mi

hr . At 3:40 PM, it reads 50mi
hr . Show

that at some time between 3:30 and 3:340
PM, the car’s acceleration is exactly 120 mi

hr2
.

Answer on Page 17

Working Space

Exercise 6

.Find the number c that satisfies theMVT
on the given interval.

(a) f(x) =
√
x, [0, 4]

(b)f(x) = e−x, [0, 2]

(c)f(x) = ln x, [1, 4]

Answer on Page 17

Working Space
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1.4 Applications in Physics

In physics, derivatives play a vital role in describing how quantities change with respect
to one another.

1.4.1 Velocity and Acceleration

In kinematics, the derivative of the position function with respect to time gives the velocity
function, and further taking the derivative of the velocity function gives the acceleration
function. For example, if s(t) represents the position of an object at time t, then the
velocity v(t) and acceleration a(t) are given by:

v(t) =
ds

dt
and a(t) =

dv

dt
=

d2s

dt2
(1.2)

Practice

A particle’s motion is described by s(t) = t3 − 6t2 + 6t, where t is measured in seconds
and s is measured in meters. Answer the following questions about the particle’s motion:

Exercise 7

.Find the velocity at time t.

Answer on Page 19

Working Space

Exercise 8

.What is the velocity after 2s? After 4s?

Answer on Page 19

Working Space
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Exercise 9

.When is the particle at rest?

Answer on Page 19

Working Space

1.4.2 Force and Momentum

In mechanics, the derivative of the momentum of an object with respect to time gives the
net force acting on the object, as stated by Newton’s second law of motion:

F =
dp

dt
(1.3)

where F is the force, p is the momentum, and t is the time.

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.

https://kontinua.org/
https://kontinua.org/


Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 5)

To estimate the slope at t = 12, we can use the data at t = 9 and t = 15. The slope of the
line connecting those points is approximate of the slope at t = 12.

y2 − y1

x2 − x1
=

67.9− 61.8

15− 9
=

6.1

6
= 1.017

The units for the numerator are degrees Fahrenheit and for the denominator are minutes.
Therefore, the estimated slope has units of degrees Fahrenheit per minute. This represents
the change in temperature of the water in the tub. When t = 12, the water in the tub is
increasing in temperature at about 1 degree Fahrenheit per minute.

Answer to Exercise 2 (on page 7)

1.
f ′(x) = lim

h→0

f(x+ h) − f(x)

h
= lim

h→0

[m (x+ h) + b] − [mx+ b]

h

f ′(x) = lim
h→0

mx+mh+ b−mx− b

h
= lim

h→0

mh

h
= lim

h→0
m = m

2.
f ′(x) = lim

h→0

f(x+ h) − f(x)

h
= lim

h→0

√
16− x− h−

√
16− x

h

f ′(x) = lim
h→0

√
16− x− h−

√
16− x

h
·
√
16− x− h+

√
16− x√

16− x− h+
√
16− x

f ′(x) = lim
h→0

(16− x− h) − (16− x)

h
(√

16− x− h+
√
16− x

)
f ′(x) = lim

h→0

−h

h
(√

16− x− h+
√
16− x

) = lim
h→0

−1√
16− x− h+

√
16− x

f ′(x) =
−1√

16− x+
√
16− x

=
−1

2
√
16− x

3.

f ′(x) = lim
h→0

f(x+ h) − f(x)

h
= lim

h→0

(x+h)2−1
2(x+h)−3

− x2−1
2x−3

h

15
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f ′(x) = lim
h→0

(
1

h

)[
x2 + 2xh+ h2 − 1

2x+ 2h− 3
−

x2 − 1

2x− 3

]
f ′(x) = lim

h→0

(
1

h

)[
x2 + 2xh+ h2 − 1

2x+ 2h− 3

(
2x− 3

2x− 3

)
−

x2 − 1

2x− 3

(
2x+ 2h− 3

2x+ 2h− 3

)]

f ′(x) = lim
h→0

(
1

h

)[(
x2 + 2xh+ h2 − 1

)
(2x− 3) −

(
x2 − 1

)
(2x+ 2h− 3)

(2x− 3) (2x+ 2h− 3)

]

f ′(x) =

(
1

h

)[
2x3 + 4x2h+ 2xh2 − 2x− 3x2 − 6xh− 3h2 + 3

(
2x3 + 2x2h− 3x2 − 2x− 2h+ 3

)
(2x− 3) (2x+ 2h− 3)

]

f ′(x) = lim
h→0

(
1

h

)[
2x2h+ 2xh2 − 6xh− 3h2 + 2h

(2x− 3) (2x+ 2h− 3)

]
f ′(x) = lim

h→0

2x2 + 2xh− 6x− 3h+ 2

(2x− 3) (2x+ 2h− 3)
=

2x2 − 6x+ 2

(2x− 3)2

Answer to Exercise 3 (on page 10)

First, let’s confirm that l’Hospital’s rule applies here:

lim
x→0

tan x− x

x3
=

0− 0

0
=

0

0

Therefore, we can apply l’Hospital’s rule:

lim
x→0

tan x− x

x3
= lim

x→0

d
dx(tan x− x)

d
dxx

3

= lim
x→0

sec2 x− 1

3x2
=

1− 1

0
=

0

0

which is an indeterminate form. We apply l’Hospital’s rule again:

lim
x→0

tan x− x

x3
= lim

x→0

d
dx(sec

2x− 1)
d
dx3x

2

= lim
x→0

2 tan x sec2 x
6x

=
2(0)(12)

6 · 0
=

0

0

which is also an indeterminate form. We apply l’Hospital’s rule again:

lim
x→0

tan x− x

x3
= lim

x→0

d
dx(2 tan x sec2 x)

d
dx6x
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= lim
x→0

2 sec2 x[2 tan2 x+ sec2 x]
6

=
2 · 1 · [2 · 0+ 1]

6

=
2

6
=

1

3

Answer to Exercise 4 (on page 10)

1. limx→3
x−3
x2−9

= 0
0 , so we apply l’Hospital’s rule. limx→3

x−3
x2−9

= limx→3
1
2x = 1

6

2. limx→1/2
6x2+5x−4
4x2+16x−9

= 0
0 , so we apply l’Hospital’s rule. limx→1/2

6x2+5x−4
4x2+16x−9

= limx→1/2
12x+5
8x+16 =

11
20

3. limx→0+
ln x√
x
= −∞

0 = −∞. This limit does not require l’Hospital’s rule because it is
evaluable

4. limx→1
x sin x−1
2x2−x−1

= 1·sin 1−1
2(1)2−1−1

= 0
0 , so we apply l’Hospital’s rule: limx→1

x sin x−1
2x2−x−1

=

limx→1

d
dx

(x sin x−1
d
dx

(2x2−x−1
= limx→1

x·cos x−1+sin x−1
4x−1 = 1·cos 0+sin 0

4−1 = 1·1+0
−3 = −1

3 .

Answer to Exercise 5 (on page 12)

The speed of a car must a continuous, differentiable function, since your car can’t ”jump”
from one speed to another: it must smoothly accelerate from one speed to another. There-
fore, the Mean Value Theorem applies. The average acceleration from 3:30 PM to 3:40 PM
is given by:

change in speed
change in time =

50mi
hr − 30mi

hr

3 : 40PM− 3 : 30PM

Simplifying and converting minutes to hours, we see the average acceleration is:

20mi
hr

1
6hr

= 120
mi

hr2

Therefore, by MVT, there must be some time between 3:30 and 3:40 PM where the car’s
acceleration is exactly 120 mi

hr2
.

Answer to Exercise 6 (on page 12)

(a) For the domain given, f(x) is defined and differentiable. Finding the slope of the
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secant line connecting the endpoints:

f(b) − f(a)

b− a
=

√
4−

√
0

4− 0
=

2

4
=

1

2

So we are looking for some number c such that f ′(c) = 1
2 . Let’s find f ′(x):

f ′(x) =
d

dx

√
x =

1

2
√
x

Setting this equal to 1
2 to find c:

f ′(c) =
1

2
√
c
=

1

2
√
c = 1

c = 1

(b)For the domain given, f(x) is defined and differentiable. Finding the slope of the secant
line connecting the endpoints:

f(2) − f(0)

2− 0
=

e−2 − e0

2
=

1− e2

2e2
≈ −0.432

And find f ′(x):
f ′(x) = −e−x

According to MVT, there must be some c such that f ′(c) ≈ −0.432:

−e−c ≈ −0.432

e−c ≈ 0.432

−c ≈ ln 0.432

c ≈ − ln 0.432 ≈ 0.839

(c) For the domain given, f(x) is defined and differentiable. Finding the secant line con-
necting the endpoints:

f(b) − f(a)

b− a
=

ln 4− ln 1

4− 1
=

ln 4

3
≈ 0.462

And find f ′(x):
f ′(x) =

1

x
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According to MVT, there must be some c such that f ′(c) ≈ 0.462

f ′(c) =
1

c
≈ 0.462

c ≈ 1

0.462
= 2.164

Answer to Exercise 7 (on page 13)

Velocity is the derivative of position. Therefore, v(t) = s ′(t) = 3t2 − 12t+ 6.

Answer to Exercise 8 (on page 13)

v(2) = 3(2)2 − 12(2) + 6 = −6
m

s

v(4) = 3(4)2 − 12(4) + 6 = 6
m

s

Answer to Exercise 9 (on page 14)

When the particle is at rest, v(t) = 0.

3t2 − 12t+ 6 = 0

3(t2 − 4t+ 2) = 0

t2 − 4t+ 2 = 0

This is not easily factorable, so we will use the quadratic formula:

t =
−(−4)±

√
(−4)2 − 4(1)(2)

2(1)

x =
4±

√
16− 8

2
= 2±

√
2 ≈ 0.586, 3.414

Therefore, the particle is at rest at 0.586s and 3.414s.
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