
Chapter 1

First and Second Derivatives
and the Shape of a Function

1.1 Using first derivatives to describe a function

1.1.1 Critical Values

Let’s re-examine our graph showing the height of a hammer tossed in the air:

As you can see, the hammer reaches its peak around t ≈ 0.5s (see figure 1.1). Let’s add
tangent lines just before and after the peak of the hammer’s path, so we can more easily
examine how the slope of the graph changes:

In figure 1.2, we see that the slope changes from positive to negative as t increases. That
implies that f ′(t) also changes from positive to negative. In fact, at the highest point of
the hammer’s flight, the slope (and therefore f ′(t)) is exactly zero! In general,

1. If f ′(x) > 0 (positive slope) on an interval, then f(x) is increasing on that interval.

2. If f ′(x) < 0 (negative slope) on an interval, then f(x) is decreasing on that interval.

Example 1: Find where the function f(x) = 3x4 − 4x3 − 12x2 + 5 is increasing.

Solution: We want to find the intervals where f ′(x) > 0. First, we take the derivative to
find f ′(x):

f ′(x) = 12x3 − 12x2 − 24x

It will be easier to analyze the value of f ′(x) if we factor it so:

f ′(x) = 12x(x− 2)(x+ 1)

To determine where f ′(x) > 0, we start by finding where f ′(x) = 0 (in this case, this is
true when x = −1, 0, 2). These values of x are called critical values, and we will use them
to divide f ′(x) into intervals. (Critical values are also called critical numbers, and we will
use both in this text.) On each of these intervals, f ′(x) must be always positive or always
negative. This is shown in the graph below:

As you can see in figure 1.3, f ′(x) > 0 on two intervals: x ∈ (−1, 0) and x ∈ (2,∞). These
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Figure 1.1: Height of a hammer over time
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Figure 1.2: height of a hammer over time
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Figure 1.3: f ′(x) with critical values
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are open intervals because f ′(x) = 0 at x = −1, x = 0, and x = 2. But what if we had a
more complex function, or didn’t have the resources to graph it? We can use a table to
help us analyze the value of f ′(x) (and therefore the behavior of f(x)). For each interval
around the critical values, we can determine if f ′(x) is positive or negative by noting the
value of the factors of f ′(x), which are 12x, x− 2, and x+ 1 in this case. For example, for
x < −1, 12x < 0, (x − 2) < 0, and (x + 1) < 0. Three negatives multiplied together is also
negative. Therefore, for x < −1, f ′(x) is negative and f(x) is decreasing. We can analyze
all of the intervals similarly and log the results in a table:

x 12x x− 2 x+ 1 f ′(x) f(x)
x < −1 negative negative negative negative decreasing

−1 < x < 0 negative negative positive positive increasing
0 < x < 2 positive negative positive negative decreasing
2 < x positive positive positive positive increasing

Notice the table method yields the same result as examining the graph: f(x) is increasing
for x ∈ (0,−1) and x ∈ (2,∞), which can also be written as x ∈ (−1, 0) ∪ (2,∞).

Exercise 1

.Let g be the function given by g(x) =
x2ekx, where k is a constant. For what
value(s) of k does g have a critical value
at x = 2

3?

Answer on Page 21

Working Space

1.1.2 Local Extrema

Examine the graphs of x2, sin x, and y =
√
4− x2 below. Each has a dot at a local extreme

(either a local minimum or local maximum). Sketch what you think the tangent line to
the graph would be at each local extreme. Use this to estimate the value of the derivative

at that point.
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Figure 1.4: f(x) = x3 + 3
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You should notice that all of the tangent lines are horizontal. Since the tangent lines at
these local extrema have a slope of 0, that tells us f ′(x) = 0 at these points as well. In
fact, for all local minima and maxima, the value of the derivative is zero at that point.
However, the converse statement is not necessarily true; just because the derivative is zero
at some x = c, it does not mean there is a local extrema at f(c). Consider f(x) = x3 + 3,
shown in figure 1.4:

At x = 0, f ′(x) = 0, but there is not a local extreme. For a local extreme to exist, the graph
of f(x) must change from increasing to decreasing, or vice versa. Look closely at figure
1.4: the function is increasing for x < 0 and x > 0. Another way of saying this is to note
that the graph of f ′(x) touches but does not cross the x-axis in this case:

If f(x) changes from increasing to decreasing, then f ′(x) is changing from positive to
negative (i.e. crossing the x-axis). Look at the derivative of f(x) = sin x, f ′(x) = cos x,
presented in figure 1.6. The x-values where local extrema exist on f(x) are marked in red
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Figure 1.5: f ′(x) = 3x2
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Figure 1.6: f ′(x) = cos x

(recall sin x = ±1 when x = nπ
2 ):

As you can see, local extrema are indicated when f ′(x) crosses the x-axis. If f ′(x) is
negative to the left of x = c and positive to the right, then f(x) has a local minimum at
x = c. On the other hand, if f ′(x) is positive to the left of x = c and negative to the right,
then f(x) has a local maximum at x = c. Any value of x = c where f ′(c) = 0 is called
a critical number or a critical value. Values where f(c) does not exist are also a critical
numbers.

1.1.3 Practice: Interval of Increasing and Decreasing, Local Extrema
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Exercise 2

.Let f be the function given by f(x) =
300x − x3. On which of the following
intervals is f increasing?

Answer on Page 21

Working Space

Exercise 3

.Find the intervals on which f(x) = x3 −
3x2 − 9x + 4 is increasing or decreasing.
Then, find all local minimum and/ormax-
imum values of f(x).

Answer on Page 22

Working Space

1.1.4 Global Extrema

Now that we’ve learned how to identify local minima and maxima, let’s expand the dis-
cussion to include global extrema. A global extreme is an absolute minimum or maximum
value of a function over a particular interval or the entire domain of the function. Let’s
examine the graph of f(x) = x4 − 5x3 + 6x2 over the domain x ∈ [−1, 4].

As you can see in figure 1.7, f(x) has two local minima and one local maximum. Addi-
tionally, the endpoints are labeled. To determine the global extrema, we need to examine
the any local extrema (identified here graphically, but you can also identify them math-
ematically using that you learned in the ”Local Extrema” subsection) and the endpoints
of the domain (or the function’s behavior at ±∞, if you are Notet restricted to a specific
domain).

In the case of f(x) = x4 − 5x3 + 6x2, forx ∈ [−1, 4], the global maximum value is 32 at
x = 4 and the global minimum is -1.623 at x = 2.593.

If a function is continuous on an interval, then there must exist a global maximum and
global minimum on that interval. These global extrema may also be local extrema (as is
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Figure 1.7: Graph of f(x) = x4 − 5x3 + 6x2

the case for f(2.593) in the example above) or not (as is the case for f(4)). Applying the
Closed Interval Method is a straightforward way to identify global (absolute) extrema.
To find the global extrema of a continuous function, f, on a closed interval [a, b]:

1. Find the values of f at the critical numbers of f in (a, b).

2. Find the values of f at the endpoints of the interval.

3. The largest of the values from steps 1 and 2 is the absolute maximum; the smallest
of the values is the absolute minimum.

Let’s use the Closed Interval Method to determine the global extrema for the function
g(x) = x− 3 sin x on the interval x ∈ [0, 2π].

To find the value of g at any critical numbers, we must first identify the critical numbers.
Recall that critical numbers are values where the first derivative of the function is 0 or
does not exist. To find critical numbers, we set g ′ equal to 0:

g ′(x) = 1− 3 cos x = 0

3 cos x = 1

cos x =
1

3

x = 1.23, 5.052

Now, we substitute these critical numbers back into g(x):

g(1.23) ≈ −1.60

g(5.052) = 7.881
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Now we need to check the endpoints:

g(0) = 0− 3 ∗ 0 = 0

g(2π) = 2π− 3 ∗ 0 = 2π ≈ 6.28

The results are presented in the table below:

x g(x)
0 0

1.23 -1.60
5.052 7.881
6.28 6.28

Therefore, for g(x) = x − 3 sin x on the interval x ∈ [0, 2π], the global maximum is
g(5.052) = 7.881 and the global minimum is g(1.23) = −1.60.

1.1.5 Practice: Global Extrema

Exercise 4

.Let f be the function defined by f(x) =
ln x
x . What is the absolute maximum value

of f?

Answer on Page 22

Working Space
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Exercise 5

.Find the global minimum andmaximum
values on the stated interval.

1. f(x) = 12+ 4x− x2, [0, 5]

2. f(t) =
√
t

1+t2
, [0, 2]

3. f(t) = 2 cos t+ sin 2t, [0, π2 ]

4. f(x) = ln x2 + x+ 1, [−1, 1]

Answer on Page 23

Working Space

1.2 Sketching f from f’

Now that we know how the shape of f is related to the value of f ′, we can predict the
shape of f if we are given f ′. Take the example f ′(x) = −(x − 1)(x − 5), shown in figure
1.8:
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2

Figure 1.8: Graph of f ′ = −(x− 1)(x− 5)

Using the graph of f ′, we can construct an approximate sketch of f. First, let’s identify
the critical numbers. Where does f ′ = 0? Take a second to examine the graph of f ′ above
and jot down what you think the critical numbers are.

You should recall that critical numbers are x-values where f ′ = 0. Examining the graph of
f ′, we see that f ′ = 0 at x = 1 and x = 5. We can now use a table to describe the behavior
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of f:

x x− 1 x− 5 f ′ behavior of f
x < 1 negative negative negative decreasing
x = 1 zero negative zero local minimum

1 < x < 5 positive negative positive increasing
x = 5 positive zero zero local maximum
x > 5 positive positive negative decreasing

We can use this information to sketch a possible graph of f. We start by noting the location
of local extrema:
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Figure 1.9: Possible graph of f

We know there is a local minimum at x = 1 and a local maximum at x = 5. We can add
sketches around these values to indicate what we know about f:

2 4 6

−4

−2

2

4

6

8

Figure 1.10: Possible graph of f
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Lastly, we know f is increasing on 1 < x < 5 and decreasing everywhere else, so we fill in
the space between our local extrema:
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Figure 1.11: Possible graph of f

However, figure 1.11 is only a possible graph of f. Analyzing f ′ reveals the shape of f, but
not how high or low it is on the y-axis. Recall that the derivative of a constant is zero.
Therefore, any +c (where c is a constant) is lost when taking the derivative. So, there are
many sketches of f that fulfill the behavior of f indicated by f ′. You can see several of the
possible sketches for f in figure 1.12.
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Figure 1.12: Possible graphs of f

1.2.1 Practice Sketching f from f’
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Figure 1.13: Graph of f ′(x)

Exercise 6

.Use figure 1.13 to answer the following
questions:

1. On what approximate intervals is
f increasing or decreasing?

2. At what approximate values of x

does f have a local maximum or
minimum?

3. Sketch a possible graph of f in the
space below:

Answer on Page 23

Working Space
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1.3 Using second derivatives to describe a function

1.3.1 Concavity

Let’s examine two increasing functions, f(x) = x2

2 and g(x) =
√
x:

Even though both of these functions are increasing, they have different shapes. f(x) looks
like a bowl. On the other hand, g(x) looks like an upside-down bowl. These shapes are
called concave up (in the case of f(x)) and concave down (in the case of g(x)). Both functions
are increasing on the interval x ∈ [0, 4], and therefore both f ′(x) and g ′(x) are positive on
the stated interval. Let’s look at their second derivatives, f ′′(x) and g ′′(x):

As you can see, f ′′(x) > 0 and g ′′(x) < 0. The second derivative tells us if a function is
concave up or concave down. In general:
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f(x) = 2− x2

g(x) = x2

1. If f ′′(x) > 0 for all x in a given interval, then the graph of f is concave up on the
interval.

2. If f ′′(x) < 0 for all x in a given interval, then the graph of f is concave down on the
interval.

Additionally, the second derivative can help us determine if there is a local minimum or
maximum at critical numbers. Look at the graphs of f(x) = 2 − x2 and g(x) = x2, which
both have first derivatives equal to 0 at x = 0:

When the graph is concave up, there is a local minimum where the first derivative equals
0. When the graph is concave down, there is a local maximum where the first derivative
equals 0. This is summarized with the Second Derivative Test:

Suppose f ′′ is continuous near c. Then,

1. If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c.
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2. If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c.

1.3.2 Inflection Points

If f is concave up when f ′′ > 0 and concave down when f ′′ < 0, what about when f ′′ = 0?
This is the value at which f changes from concave up to concave down (or vice versa),
which is called an inflection point. Similar to local extrema with f ′, if there is an inflection
point at x = c, then f ′′(c) = 0, but the converse is not necessarily true. To check if x = c

is an inflection point, then f ′′ should change signs on either side of x = c ( either from
positive to negative to from negative to positive).

Look at the graph of f(x) = x4 − 4x3. The concave up areas are shown in red, and the
concave down in blue:

−2 −1 1 2 3 4 5

−20

−10
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Let’s examine f ′′ to confirm the inflection points are at (0, 0) and (2,−16). First, we note
that f ′′(x) = 12x2 − 24x. Factoring, we see that f ′′(x) = 12x(x − 2), which has zeroes at
x = 0 and x = 2. For x < 0, f ′′ > 0, and for 0 < x < 2, f ′′ < 0; therefore, there is an
inflection point in f at (0, 0).

Exercise 7

.Prove that the other inflection point for
f(x) = x4 − 4x3 is (2,−16).

Answer on Page 24

Working Space
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Exercise 8

.The graph below shows g ′(x). Describe
the behavior of g(x) from x = 0 to x = 2.

0.5 1 1.5 2

0.5

1

x

g ′(x)

Answer on Page 24

Working Space

Exercise 9

.[This question was originally presented
as a calculator-allowed, multiple-choice
problem on the 2012 APCalculus BC exam.]
For −1.5 < x < 1.5, let f be a func-
tion with first derivative given by f ′(x) =

e(x
4−2x2+1) − 2. State the interval(s) (to

three decimal places) for which f is con-
cave down.

Answer on Page 24

Working Space
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Exercise 10

.[The following problem was originally
presented as a calculator-allowed, multiple-
choice question on the 2012 AP Calcu-
lus BC exam.] Consider the function, f,
whose graph is shown below. Classify
each of the following statements as true
or false and explain.

1. f ′ > 0 for x ∈ (−2, 0).

2. f is differentiable at x = 0.

3. f ′′ > 0 for x ∈ (0, 2)

4. f has a critical value at x = 0

−2 −1 1 2

1

x

f(x)

Answer on Page 25

Working Space
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Exercise 11

.[The following problem was originally
presented as a calculator-allowed, multiple-
choice question on the 2012 AP Calculus
BC exam.] The graph of f ′, the deriva-
tive of f, is shown below. Classify each
of the following statements as true or
false and explain your answer.

1. f has a relative minimum at x =
−3.

2. The graph of f has a point of in-
flection at x = −2.

3. The graph of f is concave down for
0 < x < 4.

1 x

f(x)

Answer on Page 25

Working Space



Section 1.3 USING SECOND DERIVATIVES TO DESCRIBE A FUNCTION 19

Exercise 12

.[The following problem was originally
presented as a calculator-allowed, multiple-
choice question on the 2012 AP Calcu-
lus BC exam.] Let f be a function that
is twice differentiable on −2 < x < 2

and satisfies the conditions in the table
below. If f(x) = f(−x), what are the x-
coordinates of the points of inflection of
the graph of f on −2 < x < 2?

0 < x < 1 1 < x < 2

f(x) Positive Negative
f ′(x) Negative Negative
f ′′(x) Negative Positive

Answer on Page 26

Working Space
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Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 3)

Recall that critical values are values of x where g ′(x) = 0 or is undefined. We need to find
an expression for g ′(x), set it equal to zero when x = 2

3 , and solve for k.

g ′(x) = x(2)[k ∗ expkx] + expkx[2x]

g ′(
2

3
) = (

2

3
)2[k ∗ exp 2k

3
] +

4

3
exp 2k

3
= 0

4k

9
e

2k
3 +

4

3
e

2k
3 = 0

(
4k

9
+

4

3
)e

2k
3 = 0

There are no real values of k such that e
2k
3 = 0, therefore, we will examine the other factor:

4k

9
+

4

3
= 0

4k

9
=

−4

3

k

3
= −1

k = −3

Therefore, g(x) has a critical value at x = 2
3 when k = −3.

Answer to Exercise 2 (on page 6)

First, we will find f ′ and set it equal to zero:

f ′(x) = 300− 3x2 = 0

300 = 3x2 → x = ±
√
100 = ±10

(Note: f ′(x) = 3(10 − x)(10 + x), which implies roots at x = ±10. Now, we will evaluate
the value of f ′(x) for x < −10, −10 < x < 10, and x > 10.

21
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Value of x (10-x) (10+x) f ′(x) f(x) behavior
x < −10 positive negative negative decreasing

−10 < x < 10 positive positive positive increasing
x > 10 negative positive negative decreasing

Therefore, the function is increasing on the interval x ∈ [−10, 10] because f ′(x) > 0 for
x ∈ [−10, 10].

Answer to Exercise 3 (on page 6)

Given f(x) = x3 − 3x2 − 9x + 4, it follows that f ′(x) = 3x2 − 6x − 9. Factoring, we find
that f ′(x) = 9(x − 3)(x + 1) and f ′(x) = 0 when x = 3 and x = −1. We construct our
table to help us analyze the value of f ′(x) and behavior of f(x) on the whole domain of
the function:

Value of x (x− 3) (x+ 1) f ′(x) f(x) behavior
x < −1 negative negative positive increasing

−1 < x < 3 negative positive negative decreasing
x > 3 positive positive positive increasing

So, f(x) is increasing for x ∈ (−∞,−1) ∪ (3,∞) and decreasing for x ∈ (−1, 3). Since
f ′(−1) = 0 and changes from positive to negative, f(x) has a local maximum at x = −1.
And since f ′(3) = 0 and changes from negative to positive, f(x) has a local minimum at
x = 3.

Answer to Exercise 4 (on page 8)

First, we identify any critical numbers:

f ′(x) =
x ∗ ( 1x) − ln x ∗ 1

x2
=

1− ln x

x2

Recall that critical numbers are values where f ′(x) = 0 or does not exist. We might identify
x = 0 as a critical number, but the presence of ln x limits the domain of the function to
x ∈ (0,∞), excluding x = 0. For all x ∈ (0,∞), f ′(x) exists. So, we look for values where
f ′(x) = 0.

1− ln x

x2
= 0

1− ln x = 0

1 = ln x

x = e
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Finding the value of f(x) at x = e:

f(e) =
ln e

e
=

1

e

Because the domain of f(x) is on an open interval, instead of checking the endpoints directly,
we’ll take the limits as x approaches 0 and ∞.

lim
x→0

ln x

x
= −∞ <

1

e

lim
x→∞ ln x

x
= 0 <

1

e

Therefore, the absolute maximum values of f(x) = ln x
x is 1

e at x = e.

Answer to Exercise 5 (on page 9)

1. f ′(x) = 4− 2x and to find the critical numbers, we set f ′(x) = 0:

4− 2x = 0

x = 2

We evaluate f(x) at x = 0, 2, 5:

f(0) = 12+ 4(0) − 02 = 12

f(2) = 12+ 4(2) − 22 = 12+ 8− 4 = 16

f(5) = 12+ 4(5) − 52 = 12+ 20− 25 = 7

Therefore, the global maximum is f(2) = 16 and the global minimum is f(5) = 7.

2.

Answer to Exercise 6 (on page 12)

[Your answers are meant to be estimates; anything within ±0.1 of the given answers are
reasonable estimates.]

1. f(x) is increasing on the intervals x ∈ (−0.5, 2.2) ∪ (4, 7.3). f(x) is decreasing on the
intervals x ∈ (−∞,−0.5) ∪ (2.2, 4) ∪ (7.3,∞).

2. f(x) has local maxima at x = 2.2, 7.3 and local minima at x = −0.5, 4.
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3. Your sketch should show the maxima and minima identified in part 2. One possible

solution is shown below. −1 0 1 2 3 4 5 6 7 8

0

5

10

15

Answer to Exercise 7 (on page 15)

Noting that f ′′(2) = 0, we examine the value of f ′′ around x = 2. For 0 < x < 2 , f ′′ < 0,
which indicates f is concave down in the domain x ∈ (0, 2). For x > 2, f ′′ > 0, which
indicates f is concave up. Therefore, there is an inflection point at x = 2 for f. Recalling
that f(x) = x4 − 4x3, we find the coordinate of the inflection point by substituting x = 2:

f(2) = 24 − 4 ∗ 23 = 16− 4 ∗ 8 = 16− 32 = −16

Therefore, f(x) has an inflection point at (2,−16).

Answer to Exercise 8 (on page 16)

According to the graph, g ′ is positive and increasing. Therefore, g is increasing (because
g ′ is positive) and concave up (because g ′ is increasing, and therefore g ′′ is positive).

Answer to Exercise 9 (on page 16)

Since the question asks about concavity, we need to examine the second derivative:

f ′′(x) =
d

dx
f ′(x) =

d

dx

[
e(x

4−2x2+1) − 2
]

f ′′(x) =
(
x4 − 2x2 + 1

)
e(x

4−2x2+1)
(
4x3 − 4x

)
The second derivative equals zero when x4 − 2x2 + 1 = (x2 − 1)2 = 0 or 4x3 − 4x =
4(x)(x2 − 1) = 0, which gives roots x = 0, x = 1, and x = −1. So the intervals we need
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to test are (−1.5,−1), (−1, 0), (0, 1), and (1, 1.5). To test x ∈ (−1.5,−1), we will substitute
x = −1.25 into f ′′(x):

f ′′(−1.25) = −3.85928 < 0

Therefore, f(x) is concave down on the interval x ∈ (−1.5,−1). Next, we test x ∈ (−1, 0):

f ′′(−0.5) = 2.63258 > 0

So, we eliminate x ∈ (−1, 0). Next, we test x ∈ (0, 1):

f ′′(0.5) = −2.63258 < 0

And f(x) is concave down on the interval x ∈ (0, 1). Finally, we test the interval x ∈ (1, 1.5):

f ′′(1.25) = 3.85928 > 0

Which eliminates that interval. Therefore, f(x) is concave down on the intervals x ∈
(−1.5,−1) and x ∈ (0, 1).

Answer to Exercise 10 (on page 17)

1. False. For x ∈ (−2, 0), the slope of f(x) is negative, which implies that f ′(x) < 0 for
x ∈ (−2, 0).

2. False. The graph comes to a point at x = 0, therefore limx→0+ f ′(x) 6= limx→0− f ′(x),
which means the limit does not exist and f is not differentiable at x = 0.

3. True. The graph of f(x) is concave up for x ∈ (0, 2), which means the second deriva-
tive is positive.

4. True. Recall that critical values are where derivatives equal 0 or do not exist. Since
we have established that f(x) does not exist at x = 0, then there is a critical value at
x = 0.

Answer to Exercise 11 (on page 18)

1. True. f ′(3) = 0 and f ′ has a positive slope, which means there is a local extreme and
f is concave up at x = 3. Therefore, there is a local minimum at x = 3.

2. False. Though it appears that f ′′ = 0 at x = −2, the slope of f ′ is positive before and
after. Therefore, f ′′ does not cross the x-axis and there is not an inflection point at
x = −2.

3. True. For 0 < x < 4, the slope of f ′ is negative, which means f ′′ is negative, which
means f is concave down.
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Answer to Exercise 12 (on page 19)

The graph of f has inflection points at x = −1 and x = 1. Since f(x) = f(−x), we can expand

the table to include the entire windowwe are investigating:

−2 < x < −1 −1 < x < 0 0 < x < 1 1 < x < 2

f(x) Negative Positive Positive Negative
f ′(x) Negative Negative Negative Negative
f ′′(x) Positive Negative Negative Positive

Recall that inflection points occur when f ′′ changes from positive to negative or from neg-
ative to positive. Examining the table, we see that the sign of f ′′ changes at x = −1 and
x = 1.
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