CHAPTER |

Singular Value Decomposition

In the previous chapter you learned how to calculate eigenvalues and eigenvectors. But
not every matrix has them. For those matrices, singular values and singular vectors are
analogous features.

Singular Value Decomposition (SVD) is a matrix factorization technique that breaks down
a matrix into three matrices that represent the structure and properties of the original
matrix.The decomposed matrices make calculations easier and provide insight into the
original matrix. Basically, SVD can transform a high dimension, highly variable set of
data into a set of uncorrelated data points that reveal subgroupings that you might not
have noticed in the original data. SVD tells us that a linear transformation can be thought
of as a rotation, scaling, and another rotation.

1.1 Definition

For any m x n matrix A, SVD decomposes the matrix into three matrices.

A=UzV' (1.1)

e U is an orthogonal matrix whose size is m x m. Its columns are the eigenvectors of
AAT. These are the left singular vectors of A. Because U is orthogonal,UTU = I

e Visan orthogonal matrix whose size is n xn matrix. Its columns are the eigenvectors
of ATA. These are the right singular vectors of A. Because V is orthogonal, VTV = L.

e 1 is a diagonal matrix that is the same size as A. Its diagonal contains the singular
values of A, arranged in descending order. These values are the square roots of the
eigenvalues of both ATA and AAT.

1.2 Applications of SVD
SVD has numerous applications:

e It’s used in machine learning and data science to perform dimensionality reduction,
particularly through a technique known as Principal Component Analysis (PCA).



2 Chapter 1. SINGULAR VALUE DECOMPOSITION

e In numerical linear algebra, SVD is used to solve linear equations and compute
matrix inverses in a more numerically stable way.

e It’s used in image compression, where low-rank approximations of an image matrix
provide a compressed version of the original image.

1.3 Calculating SVD Manually

You might be inclined to skip this example because the computations are lengthy. Why
would anyone do this when they can use a computing language, like Python, to calculate
the SVD with essentially one command? We show this so you can understand what goes
on “under the hood” when you compute SVD programmatically.

After you read through this example, you'll see how to use Python to compute SVD. Then
you’'ll see an example of using SVD for image compression. Finally, you'll have an exercise
to compute the SVD. For this, you'll need to write your own Python script.

Let’s find the SVD for matrix A. Recall that we want to find U. £, and V' such that:

A=UuzV’ (1.2)

Calculating

will give us a square matrix:

AT =

3 -1

1 3

11
3 -1

311 11

AA:[—] 31][} ?][1 11]

Next we will find the eigenvalues and eigenvectors of AT. This is a chance to apply what
you learned in the previous chapter. We know that:

—

Av = Av (1.3)
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okl

11x1 + % = Axq

So:

Rewrite as a set of equations:

x1 + 11x = Axy

Then rearrange:
(TT=A)x1+x2=0

X1+ (1T=A)x, =0

[(11—)\),1]20

Solve for A:

1,(11 =)

And as equations:
(TT=A)(1T=A)=1-1=0

(A=10)(A=12) =0

These are the eigenvalues.
A=10

A=12

When substituted into the original equations, you get the eigenvectors. For

A=10

(11=10)x1 +x2 =0

X1 = —X2
We'll set
X1
to 1 and get this eigenvector:
[1 ) 7”
For
A=10
(TT=12)x1 +x, =0
X1 =X2
We'll set
X1

to 1 and get this eigenvector:
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b

Next you need to apply the Gram-Schmidt process to the column vectors. Then you'll
have U, the m x m matrix whose columns are eigenvectors of AAT. These are the left
singular vectors of A. After you apply Gram-Schmidt, you should end up with:

w1

The matrix is:

1/V2 —1/v2
The process for calculating V is the same as the calculation for U, except:
V=ATA
3

ATA =

1 10 0 2
13[_3‘1;:}20104
11 2 4 2

After applying the process we applied to solve for U, you get:

1/vV6  2/vV5  1/V/30
V=|2/vV6 =15 2/\/?0]
1/vV6e 0 —5/V30

However, you want Vr:

Vr=|2/v/5 —1/V5 0
[1/V/30 2/V30 —5//30
You have only to calculate %, a diagonal matrix that is the same size as A. The diagonal

contains the singular values of A, arranged in descending order. They are the square roots
of the eigenvalues of both ATA and AAT.

(1/vVe  2/V6 1/\@]

Because the non-zero eigenvalues of U are the same as V, let’s use the eigenvalues we
calculate for U, 10 and 12. Note that £ will not be of the correct dimension to reconstruct
the orignal matrix unless we add a column. By adding a zero column you'll be able to
multiply between U and V:
s _ {m 0 o}
Lo V2o

You can check your work by multiplying the decomposed matrices. This should return
the orginal matrix.

A=UzVT
IVE  2VE 1/VE
S VAR I | X A
ACEY 1/V30 2/v/30 —5/v30

= 2/N5 —1/4/5 0
[M/ﬁ —VIO/VZ O] | 05 538 —5/v30

(3 11
T -1 0307

VIV VT3 O]{V\@ 2/\V6 1/\@]
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1.4 Singular Value Decomposition with Python

Create a file called vectors_decomposition.py and enter this code:

# Singular-value decomposition
import numpy as np

from numpy import array

from scipy.linalg import svd
from numpy import diag

from numpy import dot

from numpy import zeros

# Define a matrix
A = array([[1, 2], [3, 4], [5, 611)

print ("Matrix (3x2) to be decomposed: ")
print (A)

# CalculateSVD

U, S, VT = svd(A)

print ("Matrix (3x3) that represents the left singular values of A:")
print (U)

print("Singular values:")

print(S)

print ("Matrix (2x2) that represents the right singular values of A:")
print (VT)

# Check if the decomposition by rebuilding the original matrix
# The singular values must be in an m x n matrix

# Create a zero matrix with the same dimension as A

Sigma = zeros((A.shape[0], A.shapel[1]))

# Populate Sigma with n x n diagonal matrix

Sigmal[:A.shape[1], :A.shapel[1]] = diag(S)

# Reconstruct the original matrix

A_Rebuilt = U.dot(Sigma.dot(VT))

print("Original matrix:")

print (A_Rebuilt)

1.5 Sign Ambiguity

You might notice that at times the absolute values in the U and V' matrices are correct
but that the signs vary from what you see as the answer. For example, when you compare
a manually calculated SVD with one done in Python the signs might not agree. Both
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decompositions of A are valid. Both decompositions will satisfy:
A=UzV'
Note that the S diagonal values will always be positive.

The sign ambiguity has implications. For example, when using SVD to compress data, if
some of the signs are flipped, the data can have artifacts. At this point in your education,
you don’t need to concern yourself with it except when you are comparing SVD results
for the same matrix.

Exercise 1 Single Value Decomposition

. Working Space
Modity your Python code to calculate

SVD for the matrix in the worked out
example. Did you arrive at the same an-
swer? Keep in mind that Python will
compute square roots and present frac-
tions as decimal. Take a look at the signs
for the values in the U and V' matrices.
Are they the same or is this an example
of sign ambiguity?

; Answer on Page 9 4

1.6 SVD Applied to Image Compression

This image consists of a grid of 20 by 10 pixels, each of which is either black or white.

It’s a simple image that has only two types of columns—-ideal for data compression. A row
is either the first pattern or the second.
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We can represent the data as a 20 by 10 matrix whose 200 entries are either 0 for black or

1 for white.
r000010001000000010107

0000T111111111111010
00001000100000001010
000071000100000001010
00001000100000001010
00001000100000001010
00001000100000001010
00001111111111111010
000071000100000001010
1000010007100000001010

When you perform an SVD on this matrix, there are only two non-zero singular values,
6.79 and 3.72. (You are welcome perform the calculation in Python.) Thus you can rep-
resent the matrix as:

A=U;S$;Vi+ WSV,

This means there are two u vectors each with 20 entries and two v vectors each with 10
entries, and two singular values. Add those up: 2*20 + 2*10 + 2 = 62. This implies that
the image can be represented by 62 values instead of 200. If you look back at the image,
you can see that there are many dependent columns and very few independent ones.

This is a simple image and a small pixel matrix. But it should give you a sense of how SVD
can decompose an image in a way that identifies how much of the image is redundant,
and therefor can be compressed.

1.7 Where to Learn More

We Recommend a Singular Value Decomposition. This American Mathematical Society pub-
lication focuses the geometry of SVD. What I like about the article is that it shows both
graphically and numerically how SVD can be used for data compression on images and
for noise reduction. The data compression example in your workbook is based on this
article. https://www.ams.org/publicoutreach/feature-column/fcarc-svd

Sign Ambiguity in Singular Value Decomposition (SVD). This is a good article for those
who want a deeper understanding of sign ambiguity. https://www.educative.io/blog/
sign-ambiguity-in-singular-value-decomposition

Singular Value Decomposition Tutorial. This PDF starts by defining points, space, and vectors
and works through all the concepts you need to tackle SVD. It is one of the few resources
that has a completely worked out example of manually calculating SVD. The example in


https://www.ams.org/publicoutreach/feature-column/fcarc-svd
https://www.educative.io/blog/sign-ambiguity-in-singular-value-decomposition
https://www.educative.io/blog/sign-ambiguity-in-singular-value-decomposition
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this chapter is from that tutorial. If you read the entire paper, you'll find it is a good
review of the concepts you've studied in previous chapters. https://rb.gy/j6s0w

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.


https://rb.gy/j6s0w
https://kontinua.org/
https://kontinua.org/

APPENDIX A

Answers to Exercises

Answer to Exercise 1 (on page 6)

U — —0.70710678 —0.70710678
~ |—0.70710678  0.70710678

Singularvalues = [3.464101623.16227766]

—0.408 —0.816 —0.408
VI = |-0.894 0.447 0.0

—0.183 —0.365 0.9129
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