
Chapter 1

Python Classes

The built-in types, like strings have functions associated with them. So, for example, if
you needed a string converted to uppercase, you would call it’s upper() function: -

my_string = "houston, we have a problem!"
louder_string = my_string.upper()

This would set louder_string to ”HOUSTON,WEHAVEA PROBLEM!”When a function
is associated with a datatype like this, it called a method. A datatype with methods is
known as a class. The data of that type is known as instance of that class. For example, in
the example, we would say “my_string is an instance of the class str. str has a method
called upper”

The function type will tell you the type of any data:

print(type(my_string))

This will output

<class 'str'>

A class can also define operators. +, for example, is redefined by str to concatenate strings
together:

long_string = "I saw " + "15 people"

1.1 Making a Polynomial class

You have created a bunch of useful python functions for dealing with polynomials. Notice
how each one has the word “polynomial” in the function name like derivative_of_polynomial.
Wouldn’t it be more elegant if you had a Polynomial class with a derivative method?
Then you could use your polynomial like this:

a = Polynomial([9.0, 0.0, 2.3])
b = Polynomial([-2.0, 4.5, 0.0, 2.1])

1

2 Chapter 1. PYTHON CLASSES

print(a, "plus", b , "is", a+b)
print(a, "times", b , "is", a*b)
print(a, "times", 3 , "is", a*3)
print(a, "minus", b , "is", a-b)

c = b.derivative()

print("Derivative of", b ,"is", c)

And it would output:

2.30x^2 + 9.00 plus 2.10x^3 + 4.50x + -2.00 is 2.10x^3 + 2.30x^2 + 4.50x + 7.00
2.30x^2 + 9.00 times 2.10x^3 + 4.50x + -2.00 is 4.83x^5 + 29.25x^3 + -4.60x^2 + 40.50x + -18.00
2.30x^2 + 9.00 times 3 is 6.90x^2 + 27.00
2.30x^2 + 9.00 minus 2.10x^3 + 4.50x + -2.00 is -2.10x^3 + 2.30x^2 + -4.50x + 11.00
Derivative of 2.10x^3 + 4.50x + -2.00 is 6.30x^2 + 4.50

Create a file for your class definition called Polynomial.py. Enter the following:

class Polynomial:
def __init__(self, coeffs):

self.coefficients = coeffs.copy()

def __repr__(self):
Make a list of the monomial strings
monomial_strings = []

For standard form we start at the largest degree
degree = len(self.coefficients) - 1

Go through the list backwards
while degree >= 0:

coefficient = self.coefficients[degree]

if coefficient != 0.0:
Describe the monomial
if degree == 0:

monomial_string = "{:.2f}".format(coefficient)
elif degree == 1:

monomial_string = "{:.2f}x".format(coefficient)
else:

monomial_string = "{:.2f}x^{}".format(coefficient, degree)

Add it to the list
monomial_strings.append(monomial_string)

Section 1.1 MAKING A POLYNOMIAL CLASS 3

Move to the previous term
degree = degree - 1

Deal with the zero polynomial
if len(monomial_strings) == 0:

monomial_strings.append("0.0")

Separate the terms with a plus sign
return " + ".join(monomial_strings)

def __call__(self, x):
sum = 0.0
for degree, coefficient in enumerate(self.coefficients):

sum = sum + coefficient * x ** degree
return sum

def __add__(self, b):
result_length = max(len(self.coefficients), len(b.coefficients))
result = []
for i in range(result_length):

if i < len(self.coefficients):
coefficient_a = self.coefficients[i]

else:
coefficient_a = 0.0

if i < len(b.coefficients):
coefficient_b = b.coefficients[i]

else:
coefficient_b = 0.0

result.append(coefficient_a + coefficient_b)

return Polynomial(result)

def __mul__(self, other):

Not a polynomial?
if not isinstance(other, Polynomial):

Try to make it a constant polynomial
other = Polynomial([other])

What is the degree of the resulting polynomial?
result_degree = (len(self.coefficients) - 1) + (len(other.coefficients) - 1)

Make a list of zeros to hold the coefficents
result = [0.0] * (result_degree + 1)

4 Chapter 1. PYTHON CLASSES

Iterate over the indices and values of a
for a_degree, a_coefficient in enumerate(self.coefficients):

Iterate over the indices and values of b
for b_degree, b_coefficient in enumerate(other.coefficients):

Calculate the resulting monomial
coefficient = a_coefficient * b_coefficient
degree = a_degree + b_degree

Add it to the right bucket
result[degree] = result[degree] + coefficient

return Polynomial(result)

__rmul__ = __mul__

def __sub__(self, other):
return self + other * -1.0

def derivative(self):

What is the degree of the resulting polynomial?
original_degree = len(self.coefficients) - 1
if original_degree > 0:

degree_of_derivative = original_degree - 1
else:

degree_of_derivative = 0

We can ignore the constant term (skip the first coefficient)
current_degree = 1
result = []

Differentiate each monomial
while current_degree < len(self.coefficients):

coefficient = self.coefficients[current_degree]
result.append(coefficient * current_degree)
current_degree = current_degree + 1

No terms? Make it the zero polynomial
if len(result) == 0:

result.append(0.0)

return Polynomial(result)

Section 1.1 MAKING A POLYNOMIAL CLASS 5

Create a second file called test_polynomial.py to test it:

from Polynomial import Polynomial

a = Polynomial([9.0, 0.0, 2.3])
b = Polynomial([-2.0, 4.5, 0.0, 2.1])

print(a, "plus", b , "is", a+b)
print(a, "times", b , "is", a*b)
print(a, "times", 3 , "is", a*3)
print(a, "minus", b , "is", a-b)

c = b.derivative()

print("Derivative of", b ,"is", c)

slope = c(3)
print("Value of the derivative at 3 is", slope)

Run the test code:

python3 test_polynomial.py

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.

https://kontinua.org/
https://kontinua.org/

Appendix A

Answers to Exercises

7

8 Chapter A. ANSWERS TO EXERCISES

Index

class in python, 1

9

	Python Classes
	Making a Polynomial class

	Answers to Exercises
	Index

