
Chapter 1

Circular Motion, continued

1.1 Review of Circular Motion Basics

We have previously discussed circular motion in the circular motion basics chapter, so let’s
do a quick review of the important concepts before we move on to rotational dynamics.

We have rotational kinematics, which describes the motion of objects rotating around
a fixed axis. The key variables in rotational kinematics are angular displacement (θ),
angular velocity (ω), and angular acceleration (α). These variables are analogous to
linear displacement, velocity, and acceleration in linear kinematics.

Linear motion Rotational motion
v = v0 + at ω = ω0 + αt

x = x0 + v0t+
1
2at

2 θ = θ0 +ω0t+
1
2αt

2

v2 = v20 + 2a(x− x0) ω2 = ω2
0 + 2α(θ− θ0)

Table 1.1: Kinematic equations for linear and rotational motion.

When an object such as a wheel or a disk rotates about an axis, each point on the object
moves along a circular path centered on that axis. The total distance traveled by a point
during one complete rotation is the circumference of its circular path, which is given by
C = 2πr. The rotation of the object is described by an angle θ, usually measured in radians,
where one full rotation corresponds to 2π radians.

1.2 Rigid Bodies

Although all points on a rotating disk pass through the same angular displacement θ in
the same amount of time, they do not all travel the same distance. Points farther from the
axis of rotation move along larger circles and therefore cover more distance during each
rotation, even though the angular displacement is the same for all points. As a result,
points farther from the axis have greater linear velocity and greater linear (tangential)
acceleration than points closer to the center, as described by the relationships v = rω and
a = rα. We call this points part of a rigid body.

A rigid body is an idealized object in which the distances between all points remain
constant, even when forces are applied. All points along a radial line have the same
angular displacement, angular velocity, and angular acceleration.
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2 Chapter 1. CIRCULAR MOTION, CONTINUED

In other words, a rigid body does not deform: it does not stretch, compress, or bend. This
assumption allows the object to be treated as a single system in which all parts move in a
predictable way relative to one another.

In rotational motion, treating an object as a rigid body means that:

• All points in the object rotate together around a common axis.

• The angular velocity (ω) and angular acceleration (α) are the same for all points in
the rigid body.

• The linear velocity (v) and linear acceleration (a) of points in the rigid body depend
on their distance (r) from the axis of rotation, following the relationships v = rω

and a = rα.

This idea maintains for many of the problems and concepts we will discuss in this chapter.

1.3 Torque

Let’s think about pushing a box along a frictionless surface. There is a linear relationship
between how hard you push and how much the box accelerates. What if, instead, you
apply the same force to a merry-go-round fixed at a central pivot? Where can you push
the merry-go-round for the highest rotation? Obviously you cannot push the merry-go-
round linearly (as it is fixed to the ground), so how far will the merry-go-round rotate?
All of these questions can be answered by the concept of torque.

Force

Figure 1.1: Merry-go-round with a singular applied force.

Torque is the concept of rotational force. Applying a torque to a surface, a rigid body, that has
a fixed rotational pivot will cause the rigid body to accelerate around the pivot, ultimately
producing an angular acceleration.

Imagine pushing open a door that is bound to a hinge on one side of the door. Pushing
open the door at a point close to the hinge will require large amount of Torque, while
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pushing closer to the door handle and farther away from the hinge is much easier to do,
and requires less Torque.

Alternatively, think of a wrench rotating a large bolt. It will require more force from your
arm closer towards the pivot, while pushing at the edge of the wrench will require less
force to produce an equivalent torque. Take a look at this in action here.

Torque

Torque, represented through the greek letter τ(tau), is defined as

τ = rF (1.1)

where F is a force perpendicular to

τ = rF sin θ (1.2)

Notice that the torque around a pivot depends on the distance from the pivot, r, and
the angle from the radius vector θ. The sin θ indicates that only the perpendicular part
of the force impacts the torque. This is equivalent to the cross product of the two
vectors:

τ = r× F (1.3)

Torque has units of Newton-meters, but in this case, it is not an energy form, so
cannot be equated to Joules. Torque is an vector, not a scalar.

Let’s do an example proving this.

Question: A rod with a fixed end is being pulled by a tension force of 50N at a 40◦ angle
from the horizontal, at a distance of 2m. Find the Torque on the rod.

θ = 40◦

F = 50 N

r = 2 m

Figure 1.2: Main diagram.

Answer: Before just plugging in values, let’s seperate the force vector into components.
The component that pulls perpendicular to the axis is 50 sin 40◦, while 50 cos 40◦ of the
force is applied pulling the rod against the pivot, which produces no torque.

https://www.youtube.com/watch?v=vQ8etJxpOSw
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F cos 40◦

(a) F cos θ

F sin 40◦

(b) F sin θ

Figure 1.3: Components of the applied force.

Think back to the wrench example: you don’t push or pull a wrench to loosen a bolt; you
must apply a force tangential or perpendicular to the bolt to rotate it.

Since only the perpendicular component contributes to the torque, we calculate the torque
to be τ = 50 sin 40◦ N (2m) ≈ 64.278Newton-meters

Exercise 1 Door Torque

.A door is connected to a wall by a hinge
0.5 m from the handle. A person opens
the door with a tangential force of 38 N.
What is the torque on the door?

Answer on Page 17

Working Space
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Exercise 2 Torque but with a twist!

.A uniform horizontal beam is hinged at
the left end and held in place by a force
applied at its right end. The beam has
length L = 2.0 m. A force of magnitude
F = 20 N is applied at the right end of
the beam, making an angle of 30◦ above
the beam.

If the pivot point is at the left end of the
beam,

1. Find the magnitude of the torque
about the hinge.

2. State whether the torque tends to
rotate the beam clockwise or coun-
terclockwise.

Answer on Page 17

Working Space

1.3.1 Torque directions

What happens when two torques are applied in opposite? Let’s take a look at the merry-
go-round again, but this time applied with two torques.

r1
r2

F1

F2

Figure 1.4: Merry-go-round with 2 forces in opposing directions.
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Torques applied in opposition act in opposite directions along the axis of rotation. As torque
is a vector defined by the cross product equation 1.3, so its direction is perpendicular to the
plane formed by position vector and force which the plane live on. In problems, you will
typically see the terms out of (�), or into (⊗), the page, corresponding to the +z or −z

directions, respectively. Remember these terms by the following visualiations: the out of
symbol (�) looks like the tip of a feathered dart coming at you, while the into symbol
(⊗) looks like the feathers of a dart. Another way to think about this is using a drill and
screw: rotating the screw counterclockwise causes it to advance toward you (out of the
page), while rotating it clockwise causes it to retreat away from you (into the page).

To determine which direction a given torque points, one first identifies the sense of ro-
tation the force would produce if acting alone: a force that tends to rotate the object
counterclockwise in the plane produces a torque vector pointing out of the page, while
a force that tends to rotate the object clockwise produces a torque vector pointing into
the page. When two torques are opposite, one must therefore cause clockwise rotation
and the other counterclockwise rotation, leading to torque vectors that are equal in line
of action but opposite in direction.

The net torque is the sum of all torques present, similar to how net force is the sum of
all forces. Generally, counterclockwise torques are positive, while clockwise torques are
negative.1 Using our merry go round example, we have F2 is �while F1 is ⊗.

τnet =
∑

τ

= τCCW − τCW

= +(F2)(r2) − (F1)(r1)

Because we know τ1 > τ2, the net torque is going to be negative, characterized with ⊗,
and clockwise.

1Note that other videos or professors may do this opposite, using CW - CCW, but as long as you are
consistent and clear, both are equally valid.
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Exercise 3 Opposing Torques on a Beam

.A uniform horizontal beam of length 4.0 m
and mass 20 kg is supported by a pivot
located 1.0 m from the left end. Two
forces act on the beam, producing op-
posing torques about the pivot.

• A downward force of 50 N is ap-
plied at the left end of the beam.

• A downward force of unknownmag-
nitude F is applied at the right end
of the beam.

• The beam is in a state of static equi-
librium.

Complete the following:

1. Find the Weight of the Beam

2. Write an equation for torque before
solving for F

3. Solve for F, the unknown force act-
ing on the right end

Answer on Page 17

Working Space
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Exercise 4 More Complicated Opposing Torque

.Create an equation for equilibrium of the
following forces. Note that youmay pick
your own pivot point.

30◦

135◦

A

B

C

D

E

1 m

1 m︸︷︷︸

Answer on Page 18

Working Space

1.4 Moment of Inertia and Rotational F = ma

We know Newton’s Second Law by heart now, Fnet = ma. You probably could recite it
in your sleep, but what about a rotational equivalent. Recall that from our first circular
motion chapter, we have the equation a = rα. Let’s do some conversions to get this into
an angular form:

F = ma

F = mrα

rF = mr2α

τ = mr2α (1.4)

From Equation 1.4, we can derive that the “mass equivalent” is mr2, since m is multiplied
by a in the linear F = ma, while mr2 is muliplied by α. Thus, we can state that for a point
of distance r from the pivot (or axis of rotation), that singular point has rotation inertia,
also called moment of inertia, is defined as mr2. For all point masses on an object, the total
inertia is the sum of all point masses of the object.
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Moment of Inertia
A mass’s total moment of inertia is given by the sum of each mass multiplied the
distance from the axis of rotation squared.

I =
∑

mr2 (1.5)

for continuous, solid objects, this becomes

I =

∫
r2 dm (1.6)

From Equations 1.5 and 1.6, we see that mass farther from the axis matters much more
than anything closer to the pivot. Or, for two objects, one solid (mass spread evenly
throughout) and the other a hollow cylinder or hoop (mass confined to the edges), the
hollow cylinder will have a greater moment of inertia.

By finding the net rotational inertia of an object, we can create an equation for the rota-
tional equivalent of Newton’s Second Law:∑

τ = τnet = Iα (1.7)

1.4.1 Relating τ = Iα and other Torque Def’ns

Since we have already defined angular acceleration, and have just discussed moment of
inertia, we can now relate our two torque Equations 1.2 and 1.7 by equating them, as they
both equal net torque.

Iα = rF sin θ (1.8)
This will be useful for solving rotational dynamics problems, and finding any of the vari-
ables I, α, r, F, or θ when the others are known.

Exercise 5 Angular Acceleration of a Wheel

.A wheel has I = 0.80 kg·m2. A force
F = 25 N is applied at radius r = 0.40 m
at an angle θ = 60◦ to the radius.

Find α.

Answer on Page 18

Working Space
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Exercise 6 Moment of Inertia from Multiple Torques

.A rigid wheel is mounted on a friction-
less axle. Two forces act on the wheel:

• Force F1 = 30 N is applied at ra-
dius r1 = 0.50 m at an angle θ1 =
90◦ to the radius, producing a coun-
terclockwise torque.

• Force F2 = 20 N is applied at ra-
dius r2 = 0.30 m at an angle θ2 =
45◦ to the radius, producing a clock-
wise torque.

The wheel undergoes an angular accel-
eration of α = 8.0 rad/s2.

Find themoment of inertia I of the wheel.

Answer on Page 18

Working Space

1.5 Parallel-Axis Theorem

The parallel-axis theorem allows us to calculate the moment of inertia of a rigid body
about any axis that is parallel to an axis passing through the center of mass. The theorem
states that

Is = Icm +Md2 (1.9)

where Is is the moment of inertia about the axis of interest, Icm is the moment of inertia
about a parallel axis through the center of mass, M is the total mass of the object, and d

is the perpendicular distance between the two axes.

In many practical situations, such as a door rotating about its hinges or a rod rotating about
one end, the axis of rotation is offset from the center of mass, making direct calculation
more difficult. That’s where the parallel axis theorem comes in!



Section 1.6 ROTATIONAL KINETIC ENERGY AND ROLLING MOTION 11

Exercise 7 Parallel Axis Theorem

.Prove that the Moment of Inertia of the
end of a rod is Iend = 1

3ML2 given that
the center of mass of the moment of in-
ertia of a rod is ICM = 1

12ML2.

Answer on Page 19

Working Space

The parallel-axis theorem shows that the moment of inertia about an offset axis is always
greater than the moment of inertia about the center-of-mass axis. The additional term
Md2 accounts for the translational motion of the object’s center of mass relative to the
new axis of rotation. As the distance between the axes increases, the moment of inertia
increases accordingly.

If the mass of an object is not evenly distributed, the location of the center of mass shifts,
but the parallel-axis theorem remains applicable. Once the center of mass is known, the
theorem allows the moment of inertia about any parallel axis to be found by adding the
contribution due to the displacement of the center of mass. In this way, the effects of mass
distribution are fully captured by the center-of-mass term and the distance between the
axes.

1.6 Rotational Kinetic Energy and Rolling Motion

Take a look at this video: Rotational Inertia: The Race Between a Ring and a Disc.

Let’s analyze why the solid cylinder reaches the bottom first.

When two objects roll down an incline without slipping, their acceleration depends not
only on gravity, but also on how their mass is distributed. This is because a rolling object
must both translate and rotate, so gravitational potential energy is split between transla-
tional and rotational kinetic energy. The fraction that goes into rotation depends on the
object’s moment of inertia.

When an object is rolling, it has both translational kinetic energy and rotational kinetic
energy. The total kinetic energy of a rolling object is the sum of these two forms of kinetic
energy.

The total rotational kinetic energy of a rolling object comes from all of its individual point
masses rotating around the axis. Each point mass has its own rotational kinetic energy

https://www.youtube.com/watch?v=CHQOctEvtTY
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Ki, and the sum of all these individual kinetic energies gives the total rotational kinetic
energy of the object:

KErotational =
∑

Ki

=
∑

1
2mir

2
iω

2

= 1
2

(∑
mir

2
i

)
ω2

This gives us the formula for rotational kinetic energy in terms of moment of inertia:

Rotational Kinetic Energy

The rotational kinetic energy of a rigid body rotating about a fixed axis is given by

KErotational =
1
2Iω

2 (1.10)

where I is the moment of inertia of the object about the axis of rotation, and ω is the
angular velocity. This expression applies to rigid bodies rotating about a fixed axis.

Going back to our rolling objects, we can now see that the total kinetic energy of a rolling
object is the sum of its translational and rotational kinetic energies:

Total Kinetic Energy of a Rolling Object

The total kinetic energy of a rolling object is given by

KEtotal = KEtranslational + KErotational =
1
2mv2 + 1

2Iω
2 (1.11)

where m is the mass of the object, v is its linear velocity, I is its moment of inertia, and
ω is its angular velocity. For rolling without slipping, the translational and rotational
motions are linked, but it is still useful to treat their kinetic energies separately.

The moment of inertia I varies depending on how the mass is distributed in the object, and
is a measure of how much the object resists rotational motion. For example, a solid disc
has a different moment of inertia than a hollow disc of the same mass and radius. This
difference in moment of inertia affects how much of the total kinetic energy is rotational
versus translational.

The solid disc has most of its mass concentrated closer to the center, resulting in a lower
moment of inertia. This means that less of its total kinetic energy is rotational, allowing
more energy to be available for translational motion, which leads to a higher linear velocity
down the incline.
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Relationship between translational velocity and moment

For rolling objects of the same mass and radius starting from the same height, trans-
lational velocity is inversely related to moment of inertia. This relationship can be
expressed as:

v ∝ 1

I
(1.12)

Explicitly, translational velocity is inversely related to moment of inertia. Objects with
larger moments of inertia require more energy to rotate, leaving less energy available
for translational motion.

Each object has a unique moment of inertia based on its mass distribution, which directly
affects its rolling behavior. Here is a reference table with common moments of inertia for
various shapes:

Object and Axis of Rotation Moment of Inertia

Solid cylinder or disk (symmetry axis) I = 1
2MR2

Solid cylinder or disk (central diameter) I = 1
4MR2 + 1

12ML2

Hoop (symmetry axis) I = MR2

Hoop (diameter) I = 1
2MR2

Solid sphere (about diameter) I = 2
5MR2

Thin spherical shell (about diameter) I = 2
3MR2

Rod (about center, perpendicular to length) I = 1
12ML2

Rod (about one end, perpendicular to length) I = 1
3ML2

Table 1.2: Common Moments of Inertia

A visualization of each of these can be found at Georgia State University’s HyperPhysics
website: HyperPhysics: Moments of Inertia.

1.7 Flywheel Energy Storage, Work, and Angular Momentum

A flywheel is a rigid body designed to store rotational energy. It typically consists of
a heavy wheel or disk mounted on an axle, with much of its mass concentrated away
from the axis of rotation. This mass distribution gives the flywheel a large moment of
inertia, allowing it to resist changes in rotational speed. There is very little friction in the
axle, so once the flywheel is spinning, it can maintain its angular velocity for a long time
with minimal energy loss. We often eliminate friction in flywheel friction problems or

http://hyperphysics.phy-astr.gsu.edu/hbase/mi.html#cmi


14 Chapter 1. CIRCULAR MOTION, CONTINUED

calculations.

Because of its large moment of inertia, a flywheel can smooth out variations in rotational
motion. When energy is added, the flywheel stores it as rotational kinetic energy. When
energy is removed, the flywheel releases this stored energy gradually, helping maintain a
more uniform angular velocity. For this reason, flywheels are commonly used in engines,
generators, and mechanical systems that require steady rotation.

This relies on the principle of Conservation of Angular Momentum, which states that in the
absence of external torques, the total angular momentum of a system remains constant. For
a flywheel, this means that if no external torque acts on it, its angular momentum will
not change, allowing it to maintain its rotational speed even when external forces try to
slow it down.

1.7.1 Angular Momentum

The connection between angular momentum and torque is direct: torque is the rate at
which angular momentum changes. Applying a torque to a flywheel changes its angular
momentum by increasing or decreasing its angular velocity. Because of the flywheel’s
large moment of inertia, a given torque produces only a gradual change in angular speed,
contributing to the flywheel’s stabilizing effect.

Angular Momentum and the Conservation of Angular Momentum

The angular momentum L of a rotating rigid body is given by

L = Iω (1.13)

where I is the moment of inertia of the body about the axis of rotation, and ω is its
angular velocity. Angular momentum is a vector quantity, with both magnitude and
direction.

Just as linear momentum can be written as F = dp
dt , torque can be expressed as the

time rate of change of angular momentum:

τ =
dL

dt
(1.14)

We can also derive this as a Newtonian cross product between r and p, linear mo-
mentum. This works because angular momentum is the rotational equivalent of linear
momentum, but depends on the choice of origin.

L = r× p (1.15)
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Just like linear momentum, angular momentum is conserved in a system with no
external torques. This is known as the Conservation of Angular Momentum:

Linitial = Lfinal (τnet = 0) (1.16)

This equation shows that torque is responsible for changing angular momentum. Because
a flywheel has a large moment of inertia, a given applied torque produces only a small
angular acceleration, allowing the flywheel to respond smoothly to changes in applied
forces.

1.7.2 Work done by Torque

Recall that work is a change in energy. Torque also does work when it causes rotation.
For a constant torque acting on point mass through an angular displacement ∆θ the work
done is

W = Frθ = τ∆θ (1.17)

This comes from the fact that linear work is defined as W = F∆x, and the arc length of a
circle is defined as s = rθ. Thus, we can substitute rθ for ∆x in the linear work equation
to get the rotational work equation.

1.8 Summary

Here is a summary of linear quantities in physics, and their now introduced rotational
components. You may need to refer to this often to so keep it handy.
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Table 1.3: Correspondence Between Linear and Rotational Motion

Linear Motion Rotational Motion

Position x Angle θ

Velocity v Angular velocity ω

Acceleration a Angular acceleration α

Mass m Moment of inertia I

Force F Torque τ

Momentum p = mv Angular momentum L = Iω

F =
dp

dt
τ =

dL

dt

Work W = F∆x Work W = τ∆θ

Kinetic Energy 1
2mv2 Rotational KE 1

2Iω
2

Power P = Fv Power P = τω

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.

https://kontinua.org/
https://kontinua.org/


Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 4)

The torque on the door is equal to rF sin θ. Since our force is tangential, the sin component
is at its max: sin 90 = 1, our torque simplifies to τ = rF = 0.5 · 38 = 19 Newton-Meters.

Answer to Exercise 2 (on page 5)

1. Using τ = rF sin θ, we can state that the torque is τ = (2.0)(10) sin(30◦) = 20(0.5) =
10 N·m.

2. Because The force has an upward component at the right end, so the beam tends to
rotate counterclockwise.

Answer to Exercise 3 (on page 7)

1. Since the beam center is 2.0 m from the left end, and the pivot is at 1.0 m from the
left end, so the weight is W = mg = 20(9.8),

W = 196 N, acting 1.0 m right of pivot

2. We can choose our own torque direction, so let’s set counterclockwise be positive.
The left end is 1.0 m to the left of the pivot and right end is 3.0 m to the right of the
pivot. The beam’s weight acts 1.0 m to the right of the pivot.
Since there are no angles and all pivots forces are perpendicular, there are three
torques:

τ50 = (1.0)(50) = +50 N ·m CCW

τW = −(1.0)(196) = −196 N ·m CW

τF = −(3.0)(F) N ·m CW

So equilibrium is solved by:
50− 196− 3F = 0

17
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3.

50− 196− 3F = 0

−146− 3F = 0

−3F = 146

F = −48.7 N

The negative informs us that the torques act opposite the direction we assumed, so
the force acts F = 48.7 N upward at the right end.

Answer to Exercise 4 (on page 8)

You can pick your own pivot, so let’s choose the point that A and B stem from as our
pivot. This eliminates those forces, as the r component of the torque would equal zero.
Recall that the net torque is

∑
τ = τCCW − τCW. Analyizing the remaining torques:

• C is 1 m from the pivot, so the torque is τC = (1)Csin−90◦. It acts downwards, so
our torque is clockwise.

• D acts directly parallel the rotating rod, adding no additional torque on the rod.

• E is 2 m from the pivot, and acting at a −135◦ angle from the horizontal. Our torque
can be calculated from τE = (2)E sin−135◦. Note that usign −45◦ provides the same
answer. This torque is also clockwise.

Our net torque is C sin−90◦ + (2)E sin−135◦ = 0

Answer to Exercise 5 (on page 9)

Using Equation 1.8, we can rearrange to solve for α as α = rF sin θ
I .

α =
rF sin θ

I
=

0.40 · 25 sin 60

0.8
≈ 10.825 rad / s2

Answer to Exercise ?? (on page 10)

We choose counterclockwise torques to be positive. The net torque is

∑
τ = r1F1 sin θ1 − r2F2 sin θ2
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Using the rotational form of Newton’s second law,

∑
τ = Iα

Solving for I,

I =
r1F1 sin θ1 − r2F2 sin θ2

α

Substituting values,

I =
(0.50)(30) sin 90◦ − (0.30)(20) sin 45◦

8.0

I =
15− 4.24

8.0
≈ 1.35 kg·m2

Answer to Exercise 7 (on page 11)

Iend = ICM +MD2

=
1

2
ML2 +M

(
L

2

)2

=
1

2
ML2 +M

(
L2

4

)
=

(
1

12
+

1

4

)
ML2

=

(
4

12

)
ML2

=
1

3
ML2
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Index

Conservation of Angular Momentum, 14

flywheels, 13

net torque, 6

parallel-axis theorem, 10

rigid body, 1

torque, 2, 3
torques, 3

applied in opposite directions, 5
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