CHAPTER |

Continuous Probability
Distributions

When we talked about the probability distribution of the sum of two dice, we assigned a
probability to each of the 11 possibilities:

The probabilities all added up to be 1.0. That is a way of saying “100% of the times you
throw the dice, the sum will be an integer between 2 and 12.”

Now we need to talk about probabilities of properties that are continuous, not discrete.
For example, we might want to ask the question ”If I randomly pick a cow from all the
cows in the world, what is the probability that it will weigh less than 597.34 kg?” What
does a probability distribution for a continuous variable look like?

1.1 Cumulative Distribution Function

Imagine that you live in ancient times. You buy, sell, and ship cows. A lot of people come
into your office and brag about their cows: “Bessie is heavier than 99% of the cows in
world!” So you need to develop some statistics on cow weights.

You have ten cows. You weight them:
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Cow | Mass in kg
Cow 1 580.22
Cow 2 540.07
Cow 3 538.20
Cow 4 512.39
Cow 5 589.75
Cow 6 456.91
Cow 7 583.09
Cow 8 493.56
Cow 9 489.97
Cow 10 704.15

If someone comes into your shop and says "My Bessie is an astonishing 530 kg!” it would
be cool to have a list on the wall that would let you yell back “Half my cows are heavier
than that, Silly!” So you sort the cows by weight. For each weight, you say how many of
your cows are lighter than that:

Proportion of cows lighter | Mass in kg
0.00 456.91
0.10 489.97
0.20 493.56
0.30 512.39
0.40 538.20
0.50 540.07
0.60 580.22
0.70 583.09
0.80 589.75
0.90 704.15

In fact, for easy reference, you make a plot:

1o How Many Of My Cows Are Lighter? (n=10)
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Now for any weight you can quickly look up what proportion of your cows are lighter.
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(And, if you subtract that from 1, what proportion of your cows are heavier.)

See how jagged that graph is? That is because you only have the data for 10 cows. How-
ever, as the years pass and you weight thousands of cows, the plot will become smoother.
Because it always accumulates more cows as you move from left to right, this is known
as a cumulative distribution function or CDF:

Cow Mass Cumulative Distribution Function
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A cumulative distribution function always starts at 0 and ends at 1. On that journey, it
never decreases.

Let’s say you want to know what proportion of cows weigh between 620 kg and 635 kg.
Using the CDF, you could figure out that 77% of all cows weigh less than 620 kg and 83%
of all cows weigh less than 635 kg. Thus 6% of all cows must weigh more than 620 kg
and less than 635 kg.
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1.2 Probability Density Function

The cumulative density function is handy, but some of its information can be hard to see.
For example, how would you answer the question “What is the most common weight of
a cow?” You would squint at the CDF and try to determine where it was steepest.

To make these sorts of questions easier to answer, we take the derivative of the CDF to
get the probability density function (or PDF). For the cows, it would look like this:
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Now you can easily see that the CDF was steepest at about 560 kg. We call the highest
point on the PDF the most likely estimator. For example, you might say “560 kg is the most
likely estimator of cow mass.” Sometimes we just say “the MLE”.

Note that the MLE is often different from the mean or the median. In this case, for
example, the distribution is skewed right — there are more cows that are heavier than the
MLE than there are cows that are lighter than the MLE. The MLE would be less than the
mean or the median.

Once again, lets say you want to know what proportion of cows weight between 620 kg
and 635 kg. This is more difficult with a PDF than it is with a CDE. With a PDF, you have
to find the area under the curve between x = 620 and x = 635.
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Cow Mass Probability Distribution Function
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This is why it is called a ”probability density” — to get a true probability you need to
multiply the density by the width of the region.

What is the area under the entire curve? If you integrated it, you would get the CDF. The
CDF goes from 0 to 1.0. The area under a PDF is always 1.0.

1.3 The Continuous Uniform Distribution

The most simple continuous distribution is the uniform distribution between two numbers
a and b. The CDF is a straight line from zero at a to 1 at b. For example, here is the CDF
for the uniform distribution between 6 and 9.

CDF of Uniform Distribution (a=6, b=9)
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That line goes from 0 to 1 over a distance of 3, so its slope is % between 6 and 9 and zero
everywhere else. Thus the PDF (its derivative), looks like this:
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0.40 PDF of Uniform Distribution (a=6, b=9)
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So we can write the probability distribution of a continuous uniform distribution between
a and b as:

bl—a fora <x <,
p(x) =
0 forx <a or x> b.

Notice that if a and b are less than 1 apart, the value of p(x) will be greater than 1. This
is a really important difference between a probability and a probability density:

e A probability will always be in the interval [0, 1].

e A probability density will never be less than 0, but can be much larger than 1.

That said, the probability density will always integrate to 1.

Here is the PDF for a uniform distribution between 0.6 and 0.9:

PDF of Uniform Distribution (a=0.6, b=0.9)
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The mean and median of a uniform distribution between a and b is its midpoint: 3.

_q)2
The variance (o?) is (b] > g

1.4 Continuous Distributions In Python

The SciPy library has functions that let a programmer work with a large collection of
different probability distributions.

For example, if you wanted to work with a continuous uniform distribution between 6
and 9, you would import the relevant functions like this:

from scipy.stats import uniform

Now if you wanted a numpy array containing a sample of 300 numbers generated ran-
domly from that distribution:

samples = uniform.rvs(loc=6, scale=3, size=300)

The loc argument is a. The scale argument is b — a.

If you wanted to know the value of the probability density function at 8 and 10, you could
use the pdf function:

x_values = np.array([8, 10])
p_values = uniform.pdf(x_values, loc=6, scale=3)

Now p_values contains 0.33333 and 0.0.

To get the value of the cumulative distribution function at those points, you would use
the cdf function:

cdf_values = uniform.cdf(x_values, loc=6, scale=3)

Now cdf_values contains 0.666667 and 1.0.

The inverse of the CDF is very useful. It answers questions like “"How heavy does a cow
have to be to be in top 1%?”

bottom_top_percentiles = np.array([0.01, 0.99])
boundaries = uniform.ppf(bottom_top_percentiles, loc=6, scale=3)
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Now boundaries contains 6.03 and 8.97.

The SciPy library supplies these functions (rvs, pdf, cdf, and ppf) for over a hundred
common continuous probability distributions.

The common ”“bell curve” shaped distribution is called a Gaussian or Normal distribution.
It is described by its mean (the midpoint of the bell) and its standard deviation. For the
normal distribution, the standard deviation is the distance you have to go from the mean
to reach 68% of the population. We will talk a lot more about the normal distribution
in other chapters, but lets take this opportunity to plot the CDF and PDF of a normal
distribution with a mean of 32 and a standard deviation of 8.

Create a file called plot_norm.py and add the following lines:

import numpy as np
from scipy.stats import norm
import matplotlib.pyplot as plt

# Constants
MEAN = 32
STD = 8

# Plottin from the 0.5 percentile to the 99.5 percentile
x_min = norm.ppf(0.005, loc=MEAN, scale=STD)
x_max = norm.ppf(0.995, loc=MEAN, scale=STD)

# Make 200 points between x_min and x_max
x_values = np.linspace(x_min, x_max, 200)

# Get CDF for each x value
cdf_values = norm.cdf (x_values, loc=MEAN, scale=STD)

# Get PDF for each x value
pdf_values = norm.pdf (x_values, loc=MEAN, scale=STD)

# What is the highest density?
max_density = norm.pdf (MEAN, loc=MEAN, scale=STD)

# Make a figure with two axes
fig, axs = plt.subplots(nrows=2, sharex=True, figsize=(8, 8), dpi=200)
axs[0] .set_xlim(left=x_min, right=x_max)

# Draw the CDF on the first axis

axs[0] .set_title("CDF of Normal Distribution (mean=32, std=8)")
axs[0] .set_ylim(bottom=0.0, top=1.0)

axs[0] .plot(x_values, cdf_values)

# Draw the PDF on the second axix
axs[1] .set_title("PDF")
axs[1] .set_ylim(bottom=0.0, top=max_density * 1.1)
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axs[1] .plot(x_values, pdf_values)

# Add lines for mean, mean-std, and mean+std

axs[1] .vlines(MEAN - STD, O, max_density, "r", linestyle="dashed")
axs[1] .vlines(MEAN + STD, O, max_density, "r", linestyle="dashed")
# Save out the figure

fig.savefig("norm_32_8.png")

The resulting plot should look like this:

1o CDF of Normal Distribution (mean=32, std=8)
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What do those vertical lines mean? An ornithologist might tell you "The wingspan of
adult robins are normally distributed with a mean of 32 cm and a standard deviation of 8
cm.” Then 68% of the population of adult robins would have wingspans between the two
red lines.
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Exercise 1 SciPy Stats
Working Space

Globally, the height of adult women is
approximately normally distributed. The
mean is 164.7 cm. The standard devia-
tion is 7.1 cm.

Use python and SciPy stats to answer
these questions:

e To be in the tallest decile (the top
10%) of adult women, how tall does
one need to be?

e What percentage of adult women
are between 160 cm and 165 cm?

(In case you are wondering: For men the
mean is 178.4 cm and the standard devi-
ation is 7.6 cm.)

Answer on Page 11

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.
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APPENDIX A

Answers to Exercises

Answer to Exercise 1 (on page 10)

from scipy.stats import norm

# Constants
MEAN = 164.7
STD = 7.1

# What is the cutoff for the top decile?
cutoff = norm.ppf (0.9, loc=MEAN, scale=STD);
print(£f"To be in the top 10 percent, you must be at least {cutoff:.2f} cm")

# What proportion of women are between 160cm and 165cm?

shorter_than_160 = norm.cdf (160, loc=MEAN, scale=STD)

shorter_than_165 = norm.cdf (165, loc=MEAN, scale=STD)

between = shorter_than_ 165 - shorter_than_ 160

print (f"{between * 100.0:.2f}), of adult women are between 160 and 165 cm.")

When run, this will give you:

> python3 women.py
To be in the top 10 percent, you must be at least 173.80 cm
26.297, of adult women are between 160 and 165 cm.
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