
Chapter 1

Bitmaps

Let’s talk about another image format: the Bitmap. The Bitmap, denoted with file type
.bmp, is an early file format for storing images on computers. Rows of different colors are
stored as a grid of pixels. Each pixel is represented by a specific number of bits, which
determines the color depth of the image. For example, a 24-bit bitmap can represent over
16 million colors, while an 8-bit bitmap can only represent 256 colors.

Bitmaps are uncompressed, meaning they can take up a lot of storage space compared
to other image formats like JPEG or PNG. However, they are simple to read and write in
code, making them useful for certain applications where image quality is more important
than file size.

To understand how bitmaps work in practice, it helps to think of an image as nothing
more than numbers stored in memory. Each pixel in a bitmap corresponds to a color
value, and these values are usually written in hexadecimal (base-16) form. If you need a
review, look back at Chapter ??

In a common 24-bit bitmap, each pixel is made up of three color components:

• Red

• Green

• Blue

The intensity of each color component is represented by 8 bits. In decimal, this means
each component can have a value from 0 to 255, for a total of 256 possible values. In
hexadecimal, this range is represented from 00 to FF.

Each pixel’s color is then represented by a 6-digit hexadecimal number, where the first
two digits represent the red component, the next two represent green, and the last two
represent blue. A total of 16, 777, 216 different colors can be represented (256×256×256).

Together, the intensity of each component determines the final color of the pixel. For
example:

• 0xFF0000 represents pure red

• 0x00FF00 represents pure green

• 0x0000FF represents pure blue

1

2 Chapter 1. BITMAPS

• 0xFFFFFF represents white

• 0x000000 represents black

Recall that the prefix 0x indicates that the number is in hexadecimal format. When creating
or manipulating bitmap images in code, you can directly set the color values of individual
pixels using their hexadecimal representations. This allows for precise control over the
image’s appearance.

1.1 Bitmap Structure

When traversing a bitmap, it’s important to understand its structure. A bitmap file typi-
cally consists of a header followed by the pixel data. The header contains metadata about
the image, such as its width, height, and color depth. The pixel data is stored in a grid
format, with each pixel represented by its color value.

In a 24-bit bitmap, each pixel is represented by 3 bytes (one byte for each color compo-
nent). The pixel data is usually stored in a bottom-up order, meaning the first row of pixel
data corresponds to the bottom row of the image.

1.1.1 Bitmap Headers

The bitmap header is typically constructed with a file section and info section. Following
those comes the pixel data, represented as bytes.

| File Header (?) | Info Header (usually 40 bytes) | Pixel Data (rowSize*height)
|↪→

struct BITMAPFILEHEADER
{

WORD bfType; //specifies the file type
DWORD bfSize; //specifies the size in bytes of the bitmap file
WORD bfReserved1; //reserved; must be 0
WORD bfReserved2; //reserved; must be 0
DWORD bfOffBits; //species the offset in bytes from the bitmapfileheader to

the bitmap bits↪→
};
struct BITMAPINFOHEADER
{

DWORD biSize; //specifies the number of bytes required by the struct
LONG biWidth; //specifies width in pixels
LONG biHeight; //species height in pixels
WORD biPlanes; //specifies the number of color planes, must be 1

Section 1.1 BITMAP STRUCTURE 3

WORD biBitCount; //specifies the number of bit per pixel
DWORD biCompression;//spcifies the type of compression
DWORD biSizeImage; //size of image in bytes
LONG biXPelsPerMeter; //number of pixels per meter in x axis
LONG biYPelsPerMeter; //number of pixels per meter in y axis
DWORD biClrUsed; //number of colors used by th ebitmap
DWORD biClrImportant; //number of colors that are important

};

You can refer to the BMP file format specification and the bitmap article for more infor-
mation. Let’s create variables to hold important fields:

• int w = bih.biWidth; - width of the image in pixels

• int h = bih.biHeight; - height of the image in pixels

• int size = bih.biSizeImage; - the total size of the pixel data in bytes

• Note that we create bytesPerPixel = 3 - the number of bytes per pixel (3 for 24-bit
RGB)

Let’s also preemptively build a pixel structure that can contain the information of an
individual value at coordinate (x, y):

struct PIXEL
{

// Each value is in range 0 to 255 represented as a byte
BYTE b; // 1 byte
BYTE g; // 1 byte
BYTE r; // 1 byte

};

1.1.2 Padding

Remember that bytes are stored in a contiguous block of memory, as one long string of
bytes. The computer does not inherently know where one row ends and the next begins
(a concept called row-major order)1. We need to calculate the starting index of each pixel
based on its row and column position. But, there is an issue: each row of pixel data in a
bitmap must be aligned to a 4-byte boundary.

Padding exists in bitmap images to ensure that each row of pixel data is aligned to a 4-
byte boundary in memory, which was a design choice made to improve performance and

1In row-major order, 2D arrays like bitmaps are stored sequentially in memory, row by row. To review
this concept, refer back to the Vectors and Matrices Chapter, which explains how matrices can be analyzed
in row-major order.

https://en.wikipedia.org/wiki/BMP_file_format
https://en.wikipedia.org/wiki/Bitmap

4 Chapter 1. BITMAPS

simplicity on early computer systems. Processors and hardware are more efficient when
reading data that begins at predictable, aligned memory addresses, and forcing each row
to occupy a size divisible by four bytes guarantees this alignment.

Because bitmap pixels do not always naturally fill a multiple of four bytes—especially
in formats like 24-bit images where each pixel uses three bytes—extra, non-image bytes
are added to the end of each row to reach the required alignment. These padding bytes
do not represent color information and are ignored when displaying the image, but they
ensure that each row starts at a consistent location in memory, making bitmap files easier
and faster for software and hardware to process.

This means that if the width of the image (in bytes) is not a multiple of 4, we need to add
padding bytes at the end of each row to ensure proper alignment. Padding, then, is extra
bytes added to the end of each row of pixels so that the row size is a multiple of 4 bytes.

Let’s look at an example. If we create a 4 pixel bitmap, it takes up

4 pixels× 3 bytes = 12 bytes

The memory looks something like

... | ?? | ?? | [B G R] [B G R] [B G R] [B G R] | ?? | ?? | ...

Since memory is contiguous, the question marks represent unrelated memory that does
not belong to the bitmap’s pixel data. Attempting to access memory outside the bounds
of the image means the program is reading or writing data it does not own. Modern
operating systems protect memory by dividing it into regions assigned to each program.
If a program tries to access memory outside of its permitted region, the operating system
immediately stops the program and reports an error known as a Segmentation Fault.
This mechanism prevents programs from corrupting other data and helps ensure overall
system stability.

12 bytes is evenly divisible by 4, so no padding is needed.

However, if we create a 3 pixel bitmap, it would take up:

3 pixels× 3 bytes = 9 bytes

9 is not evenly divisible by 4, so 3 bytes of memory must be added as padding for row-
alignment.

... | ?? | ?? | [B G R] [B G R] [B G R] [P] [P] [P] | ?? | ?? | ...

Note that we read the pixels in B G R order in memory, but hex colors are read usually to

Section 1.1 BITMAP STRUCTURE 5

humans via R G B order. This gets into a concept called little endian. Put simply in a stack
overflow post:

RGB is a byte-order. But a deliberate implementation choice of most vanilla
Graphics libraries is that they treat colours as unsigned 32-bit integers in-
ternally, with the three (or four, as alpha is typically included) components
packed into the integer.
On a little-endian machine (such as x86) the integer 0x01020304 will actually
be stored in memory as 0x04030201. And thus 0x00BBGGRR will be stored as
0xRRGGBB00!

So how can we create an equation for finding a pixel at the coordinates (x, y) if memory
is in a contiguous line?

The calculation rawRowSize = width * bytesPerPixel provides a raw row estimate, but if
padding is included, we need to round up by 4. Themultiples of 4 look like 0, 4, 8, 12, 16, 20, 24, 28, 32

• If rawRowSize is already one of these, we want to keep it.

• If not, we want to round upwards to the next multiple.

One way to accomplish this rounding is to take advantage of integer division. By adding
a small offset before dividing, we can ensure that any value which is not already divisible
by 4 is pushed into the next group of four bytes. Specifically, adding 3 to the raw row size
guarantees that the result will round upward when divided by 4 using integer arithmetic.

This gives us the following expression for the true number of bytes in a single row, in-
cluding padding:

rowSize =

⌊
rawRowSize+ 3

4

⌋
× 4

In C++, this is commonly written as:

int rowSize = ((width * bytesPerPixel + 3) / 4) * 4;

This value represents the number of bytes that must be traversed in memory to move
from the beginning of one row of pixels to the beginning of the next. Recall that our
bytesPerPixel is 3, but can also be calculated by int bytesPerPixel = bih.biBitCount /
8;.

Once the padded row size is known, we can compute the location of any pixel at coor-
dinates (x, y). Because bitmap pixel data is stored row by row in a contiguous block of

https://stackoverflow.com/questions/367449/what-exactly-is-bgr-color-space
https://stackoverflow.com/questions/367449/what-exactly-is-bgr-color-space

6 Chapter 1. BITMAPS

memory, the offset to the start of row y is given by

y× rowSize

Within that row, each pixel occupies bytesPerPixel bytes, so the offset to column x is:

x× bytesPerPixel

Together, these two offsets combined yields the final memory index for pixel (x, y):

index(x, y) = y× rowSize+ x× bytesPerPixel

In code, this calculation appears as:

int offset = y * rowSize + x * bytesPerPixel;

This formula will come in handy later in our code!

Let’s write the full code for bitmap analysis. Starting with store the bitmap that our
program reads into a memory allocated array, we can load our bitmap into a file, and
read all the file information from it. We also can then utilize our equations rowSize and
idx to get the individual pixel at (x, y) ∈ (w,h).

// program arguments: ./bitmap_reader inputname.bmp outputname.bmp
if (argc !=3) return 1;
string inputname = argv[1];
string outputname = argv[2];

FILE *inputfile = fopen(inputname.c_str(), "rb"); // read byte only mode

BITMAPFILEHEADER bfh;
BITMAPINFOHEADER bih;

fread(&bfh.bfType, 2, 1, inputfile);
fread(&bfh.bfSize, 4, 1, inputfile);
fread(&bfh.bfReserved1, 2, 1, inputfile);
fread(&bfh.bfReserved2, 2, 1, inputfile);
fread(&bfh.bfOffBits, 4, 1, inputfile);
fread(&bih, sizeof(BITMAPINFOHEADER), 1, inputfile);

int w = bih.biWidth;
int h = bih.biHeight;
int bytesPerPixel = bih.biBitCount / 8; // 3 BYTES, stored in BGR order
int rowSize = ((w * bytesPerPixel + 3) / 4) * 4;
int size = rowSize * abs(h);
bih.biSizeImage = size;

Section 1.1 BITMAP STRUCTURE 7

bfh.bfSize = bfh.bfOffBits + bih.biSizeImage;

fseek(inputfile, bfh.bfOffBits, SEEK_SET); // offset from header
BYTE* data = (BYTE *)malloc(size);
fread(data, size, 1, inputfile);
fclose(inputfile);

// ----- FORCE STANDARD BMP HEADER HERE -----
bih.biSize = 40;
bih.biSizeImage = size;
bfh.bfOffBits = 54;
bfh.bfSize = 54 + size;

From there, we can set up an output file:

FILE *outfile = fopen(outputname.c_str(), "wb"); // creates a new file in write
bytes mode↪→

BYTE* out = (BYTE *) malloc(size);

fwrite(&bfh.bfType, 2, 1, outfile);
fwrite(&bfh.bfSize, 4, 1, outfile);
fwrite(&bfh.bfReserved1,2, 1, outfile);
fwrite(&bfh.bfReserved2,2, 1, outfile);
fwrite(&bfh.bfOffBits, 4, 1, outfile);
fwrite(&bih, sizeof(BITMAPINFOHEADER), 1, outfile);

And then, we can loop through to the w and h to analyze each individual pixel. What we
will do as a first test of pixel alteration is swap red and blue values in our output.

for (int x = 0; x < w; x++)
{

for (int y = 0; y < h; y++)
{

int idx = y * rowSize + x * 3;

PIXEL p;
BYTE B = data[idx];
BYTE G = data[idx + 1];
BYTE R = data[idx + 2];
p = { B, G, R };

PIXEL o;
o = { R, G, B }; // Swaps red and blue values
out[idx + 0] = o.b;
out[idx + 1] = o.g;
out[idx + 2] = o.r;

}
}

8 Chapter 1. BITMAPS

Note that we search our data array at idx to locate the blue component, and adding 1 and
2 respectively gets the next two bytes (green and red). This works because

• Memory is a linear array of bytes

• Pixels are stored contiguously

• The order is fixed by the BMP format

After compiling, running this using ./bitmap_reader cow.bmp output.bmp and ./bitmap_reader
gradient.bmp output.bmp produces the following outputs (see Figures ?? and ??):

(a) Input bitmap of a gradient. (b) Output bitmap.

Figure 1.1: Running bitmap_reader.cpp on a gradient, swapping red and blue channels.

Section 1.2 CREATING A BITMAP WITH C++ 9

(a) Input image of a highland cow. (b) Output bitmap.

Figure 1.2: Running bitmap_reader.cpp on a gradient, swapping red and blue channels.

The entire base code for swapping the red and blue channels is in your Digital Resources,
as well as a basic copy paste input-output bitmap. A lot of this stays the same of other
pixel-based modifications, such as the next Exercise.

Exercise 1 Eliminate the Green component

.Now try it yourself:

Alter both cow.bmp and gradient.bmp
such that the green channel is eliminated.
Keep the red and blue channels the same
(don’t swap them).

Answer on Page 17

Working Space

1.2 Creating a Bitmap with C++

What if we aren’t given an input file? Can we create a bitmap?

Of course, let’s create a simple 3x3 bitmap of the following colors:

10 Chapter 1. BITMAPS

[Red] [White] [White]
[Black] [Blue] [White]
[Black] [Black] [Green]

Although the image is conceptually two-dimensional, the bitmap file stores its pixel data
as a one-dimensional sequence of bytes.

There are, however, a few constraints:

• 14-bit file header

• 40-byte info header

• pixel data with required row padding

| File Header (14) | Info Header (40) | Pixel Data |

Calcuations:

• Each pixel = 3 bytes

• Row = 3 pixels× 3 bytes per pixel = 9 pixels

• 3 padding bytes =⇒ 12 bytes per row

• 12 bytes× 3 rows = 36 bytes

Here is the basic bitmap struct with filled in values:

#pragma pack(push, 1)
struct BITMAPFILEHEADER {

uint16_t bfType = 0x4D42; // 'BM'
uint32_t bfSize;
uint16_t bfReserved1 = 0;
uint16_t bfReserved2 = 0;
uint32_t bfOffBits = 54; // 14 + 40

};

struct BITMAPINFOHEADER {
uint32_t biSize = 40;
int32_t biWidth = 3;
int32_t biHeight = 3;
uint16_t biPlanes = 1;
uint16_t biBitCount = 24;
uint32_t biCompression = 0; // BI_RGB
uint32_t biSizeImage;

Section 1.2 CREATING A BITMAP WITH C++ 11

int32_t biXPelsPerMeter = 0;
int32_t biYPelsPerMeter = 0;
uint32_t biClrUsed = 0;
uint32_t biClrImportant = 0;

};
#pragma pack(pop)

These structures match the on-disk layout of a bitmap header exactly. The #pragma pack
directive ensures that no padding bytes are inserted by the compiler.

Recall that we can reuse our calculations from the first example to find rowsize and other
variables, but this time, we define them instead of fetching them from the input:

const int width = 3;
const int height = 3;
const int bytesPerPixel = 3;
const int rowSize = ((width * bytesPerPixel + 3) / 4) * 4; // 12
const int imageSize = rowSize * height; // 36

Now we can create a new file and write the file headers individually:

FILE* f = fopen("custom_made.bmp", "wb");

BITMAPFILEHEADER bfh;
BITMAPINFOHEADER bih;

bih.biSizeImage = imageSize;
bfh.bfSize = bfh.bfOffBits + imageSize;

fwrite(&bfh, sizeof(bfh), 1, f);
fwrite(&bih, sizeof(bih), 1, f);

At this point, the file contains only metadata. No pixel values have been written yet.

Recall that bitmap pixel data is stored bottom-up, meaning the first row written corre-
sponds to the bottom row of the image.

Memory order:
Row 2 (bottom)
Row 1
Row 0 (top)

Let’s write the third row first:

12 Chapter 1. BITMAPS

// ROW 3 (bottom)
// Black Black Green
row[0] = 0; row[1] = 0; row[2] = 0; // Black
row[3] = 0; row[4] = 0; row[5] = 0; // Black
row[6] = 0; row[7] = 255; row[8] = 0; // Green
fwrite(row, rowSize, 1, f);

Each group of three bytes represents one pixel in BGR order. Any remaining bytes in the
row serve as padding and are ignored when the image is displayed.

Row 2:

// ROW 2
// Black Blue White
row[0] = 0; row[1] = 0; row[2] = 0; // Black
row[3] = 255; row[4] = 0; row[5] = 0; // Blue
row[6] = 255; row[7] = 255; row[8] = 255; // White
fwrite(row, rowSize, 1, f);

Row 1:

// ROW 1 (top)
// Red White White
row[0] = 0; row[1] = 0; row[2] = 255; // Red
row[3] = 255; row[4] = 255; row[5] = 255; // White
row[6] = 255; row[7] = 255; row[8] = 255; // White
fwrite(row, rowSize, 1, f);

And that’s it! The compiler automatically converts the 255s to 0xFF. Close the file and run
the program, and you get an extremely small output. Enlarge the output and you get:

Section 1.2 CREATING A BITMAP WITH C++ 13

Figure 1.4: Your custom bitmap!

14 Chapter 1. BITMAPS

Exercise 2 8 Pixel Colorful Bitmap

.

Create a 4×2 bitmap with the following
layout:

[Yellow] [Magenta] [Cyan] [
White]↪→

[Black] [Red] [Green] [
Blue]↪→

Bitmap Requirements:

• Width: 4 pixels

• Height: 2 pixels

• Color depth: 24-bit (RGB, stored
as BGR)

• Compression: None (BI_RGB)

• Row padding: Rowsmust be aligned
to 4-byte boundaries

Answer the following questions before
writing any code:

1. How many bytes does each pixel
use?

2. How many bytes are required for
one row before padding?

3. How many padding bytes are re-
quired per row?

4. What is the total size of the pixel
data?

5. What is the total file size?

Answer on Page 18

Working Space

Section 1.3 SUMMARY 15

1.3 Summary

In this chapter, we experimented with bitmaps. Specifically,

• loading a bitmap in C++

• creating and copying bitmap file and info headers

• creating a pixel structure to work with hexadecimal bytes and hexcodes

• swapping the channels of a bitmap

• creating a bitmap from scratch in C++

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.
org/) for more details.

https://kontinua.org/
https://kontinua.org/

Appendix A

Answers to Exercises

Answer to Exercise 1 (on page 9)

The only thing that changes in our for loop is the writing of the output pixel.

// CODE ABOVE STAYS THE SAME
for (int x = 0; x < w; x++)
{

for (int y = 0; y < h; y++)
{

int idx = y * rowSize + x * 3;

PIXEL p;
BYTE B = data[idx];
BYTE G = data[idx + 1];
BYTE R = data[idx + 2];
p = { B, G, R };

out[idx + 0] = p.b;
out[idx + 1] = 0; // NOTE THE CHANGE HERE
out[idx + 2] = p.r;

}
}

What is happening here?

In an RGB image, each pixel’s final color is the combination of red, green, and blue inten-
sities. If the green value is removed, every pixel changes from (R,G,B) to (R,0,B). Colors
that relied heavily on green—such as greens, yellows, and many skin tones—lose a ma-
jor part of their intensity and appear much darker or shifted in hue. Pure green areas
become black, yellow areas (red + green) become red, and cyan areas (green + blue)
become blue.

Visually, the image often takes on a magenta or purplish tint (see Figures 1.3a and 1.3b),
because magenta is the combination of red and blue with no green. Overall brightness
decreases, since green contributes significantly to the brightness in human vision. Refer
to Figures 1.2a and 1.1a for the original bitmaps.

17

18 Chapter A. ANSWERS TO EXERCISES

(a) Output bitmap - cow. (b) Output bitmap - gradient.

Figure 1.3: Running bitmap_no_green.cpp on both provided bitmaps.

Answer to Exercise 2 (on page 14)

1. How many bytes does each pixel use? - 3 bytes per pixel

2. Howmany bytes are required for one row before padding? 4 pixels×3 bytes per pixel =
12 bytes

3. How many padding bytes are required per row? 0 padding bytes

4. What is the total size of the pixel data? 12 bytes per row× 2 rows = 24 bytes

5. What is the total file size, including header structs? 14 bytes for BFH+40 bytes for BIH =
54 bytes =⇒ 24+ 54 = 78 bytes

Remember that we need to write the rows bottom-up, so the second row is written first
followed by the first row.

Let’s establish the colors needed. Remember that we need to swap to BGR order:

• Black = (0, 0, 0)

• Red = (0, 0, 255)

• Green = (0, 255, 0)

19

• Blue = (255, 0, 0)

• Yellow = (0, 255, 255) (R=255,G=255,B=0 =⇒ BGR = 0,255,255)

• Magenta = (255, 0, 255) (R=255,B=255 =⇒ BGR = 255,0,255)

• Cyan = (255, 255, 0) (G=255,B=255 =⇒ BGR = 255,255,0)

• White = (255, 255, 255)

Overall the program looks like this:

#include <cstdio>
#include <cstdint>
#include <cstring>

#pragma pack(push, 1)
struct BITMAPFILEHEADER {

uint16_t bfType = 0x4D42; // 'BM'
uint32_t bfSize;
uint16_t bfReserved1 = 0;
uint16_t bfReserved2 = 0;
uint32_t bfOffBits = 54;

};

struct BITMAPINFOHEADER {
uint32_t biSize = 40;
int32_t biWidth = 4;
int32_t biHeight = 2;
uint16_t biPlanes = 1;
uint16_t biBitCount = 24;
uint32_t biCompression = 0;
uint32_t biSizeImage;
int32_t biXPelsPerMeter = 0;
int32_t biYPelsPerMeter = 0;
uint32_t biClrUsed = 0;
uint32_t biClrImportant = 0;

};
#pragma pack(pop)

int main(int argc, char const *argv[])
{

FILE* f = fopen("fourbytwo.bmp", "wb");

BITMAPFILEHEADER bfh;
BITMAPINFOHEADER bih;

const int width = 4;
const int height = 2;
const int bytesPerPixel = 3;
const int rowSize = ((width * bytesPerPixel + 3) / 4) * 4; // 12
const int imageSize = rowSize * height; // 24

20 Chapter A. ANSWERS TO EXERCISES

bih.biSizeImage = imageSize;
bfh.bfSize = bfh.bfOffBits + imageSize;

fwrite(&bfh, sizeof(bfh), 1, f);
fwrite(&bih, sizeof(bih), 1, f);
uint8_t row[rowSize];

// ----------------------------
// Write bottom row first:
// [Black] [Red] [Green] [Blue]
// ----------------------------
std::memset(row, 0, rowSize);

// Black
row[0] = 0; row[1] = 0; row[2] = 0;
// Red (BGR = 0,0,255)
row[3] = 0; row[4] = 0; row[5] = 255;
// Green (BGR = 0,255,0)
row[6] = 0; row[7] = 255; row[8] = 0;
// Blue (BGR = 255,0,0)
row[9] = 255; row[10]= 0; row[11]= 0;

fwrite(row, rowSize, 1, f);

// ----------------------------
// Write top row:
// [Yellow] [Magenta] [Cyan] [White]
// ----------------------------
std::memset(row, 0, rowSize);

// Yellow (BGR = 0,255,255)
row[0] = 0; row[1] = 255; row[2] = 255;
// Magenta (BGR = 255,0,255)
row[3] = 255; row[4] = 0; row[5] = 255;
// Cyan (BGR = 255,255,0)
row[6] = 255; row[7] = 255; row[8] = 0;
// White (BGR = 255,255,255)
row[9] = 255; row[10]= 255; row[11]= 255;

fwrite(row, rowSize, 1, f);

fclose(f);
return 0;

}

21

Figure 1.5: Exercise Output of a 4 by 2 bitmap.

22 Chapter A. ANSWERS TO EXERCISES

Index

bitmaps, 1
structure of, 2

hexadecimal, 1

padding, 4

segmentation fault, 4

23

	Bitmaps
	Bitmap Structure
	Bitmap Headers
	Padding

	Creating a Bitmap with C++
	Summary

	Answers to Exercises
	Index

